
Model Matching and SFMD
Computation

Steve Rehfuss and Dan Hammerstrom
Department of Computer Science and Engineering

Oregon Graduate Institute of Science and Technology
P.O.Box 91000, Portland, OR 97291-1000 USA

stever@cse.ogi.edu, strom@asi.com

Abstract

In systems that process sensory data there is frequently a model
matching stage where class hypotheses are combined to recognize a
complex entity. We introduce a new model of parallelism, the Single
Function Multiple Data (SFMD) model, appropriate to this stage.
SFMD functionality can be added with small hardware expense to
certain existing SIMD architectures, and as an incremental addition
to the programming model. Adding SFMD to an SIMD machine
will not only allow faster model matching, but also increase its
flexibility as a general purpose machine and its scope in performing
the initial stages of sensory processing.

1 INTRODUCTION

In systems that process sensory data there is frequently a post-classification stage
where several independent class hypotheses are combined into the recognition of
a more complex entity. Examples include matching word models with a string
of observation probabilities, and matching visual object models with collections
of edges or other features. Current parallel computer architectures for processing
sensory data focus on the classification and pre-classification stages (Hammerstrom
1990).This is reasonable, as those stages likely have the largest potential for speedup
through parallel execution. Nonetheless, the model-matching stage is also suitable
for parallelism, as each model may be matched independently of the others.

We introduce a new style of parallelism, Single Function Multiple Data (SFMD),
that is suitable for the model-matching stage. The handling of interprocessor syn­
chronization distinguishes the SFMD model from the SIMD and MIMD models:
SIMD synchronizes implicitly at each instruction, SFMD synchronizes implicitly
at conditional expression or loop boundaries, and MIMD synchronizes explicitly at

714 S. REHFUSS, D. HAMMERSTROM

arbitrary inter-processor communication points. Compared to MIMD, the use of
implicit synchronization makes SFMD easier to program and cheaper to implement.
Compared to SIMD, the larger granularity of synchronization gives SFMD increased
flexibility and power.

SFMD functionality can be added with small hardware expense to SIMD architec­
tures already having a high degree of processor autonomy. It can be presented as an
incremental addition to programmer's picture of the machine, and applied as a com­
piler optimization to existing code written in an SIMD version of 'C'. Adding SFMD
to an SIMD machine will not only allow faster model matching, but also increase
its flexibility as a general purpose machine, and increase its scope in performing the
initial stages of sensory processing.

2 SIMD ARCHITECTURE AND PROGRAMMING

As background, we first review SIMD parallelism. In SIMD, multiple processing
elements, or PEs, simultaneously execute identical instruction sequences, each pro­
cessing different data. The instruction stream is produced by a controller, or se­
quencer. Generally, each PE has a certain amount of local memory, which only it
can access directly. All PEs execute a given -instruction in the stream at the same
time, so are synchronized at each instruction. Thus synchronization is implicit, the
hardware need not support it, and the programmer need (can) not manage it. SIMD
architectures differ in the functionality of their PEs. If PEs can independently ad­
dress local memory at differing locations, rather than all having to access the same
address at a given step, the architecture is said to have local addressing. If PEs can
independently determine whether to execute a given instruction, rather than having
this determined by the sequencer, the architecture has local conditional execution.
Note that all PEs see the same instruction stream, yet a given PE executes only
one branch of any if-then-else, and so must idle while other PEs execute the other
branch. This is the cost of synchronizing at each instruction.

3 MODEL MATCHING

We view models as pieces of a priori knowledge, interrelating their components.
Models are matched against some hypothesis set of possible features. Matching
produces a correspondence between components of the model and elements of the
hypothesis set, and also aligns the model and the set ("pose estimation" in vision,
and "time-alignment" in speech). An essential fact is that, because models are
known a priori, in cases where there are many models it is usually possible and
profitable to construct an index into the set of models. Use of the index at runtime
restricts the set of models that need actually be matched to a few, high-probability
ones.

Model-matching is a common stage in sensory data processing. Phoneme, character
and word HMMs are models, where the hypothesis set is a string of observations
and the matching process is either of the usual Viterbi or trellis procedures. For
phonemes and characters, the HMMs used typically all have the same graph struc­
ture, so control flow in the matching process is not model-dependent and may be
encoded in the instruction stream. Word models have differing structure, and con­
trol flow is model-dependent. In vision, model-matching has been used in a variety
of complicated ways (cf. (Suetens, FUa & Hanson 1992)), for example, graph models
may have constraints between node attribute values, to be resolved during matching.

Model Matching and SFMD Computation 715

4 DATA AND KNOWLEDGE PARALLELISM

SIMD is a type of computer architecture. At the algorithm level, it corresponds
to data parallelism. Data parallelism, applying the same procedure in parallel to
multiple pieces of data, is the most common explicit parallelization technique. and is
the essence of the Single Program Multiple Data (SPMD) programming model. On
a distributed memory machine, SPMD can be stylized as "given a limited amount
of (algorithmic) knowledge to be applied to a large piece of data, distribute the data
and broadcast the knowledge" .

In sensory processing systems, conversely, one may have a large amount of knowl­
edge (many models) that need to be applied to a (smallish) piece of data, for ex­
ample, a speech signal frame or segment, or a restricted region of an image. In this
case, it makes sense to "distribute the knowledge and broadcast the data". Model­
matching often works well on an SIMD architecture, e.g. for identical phoneme
models. However, when matching requires differing control flow between models,
an SIMD implementation can be inefficient.

Data and knowledge parallelism are asymmetrical, however, in two ways. First,
all data must normally be processed, while there are usually indexing techniques
that greatly restrict the number of models that actually must be matched. Sec­
ond, processing an array element frequently requires information about neighboring
elements; when the data is partitioned among multiple processors, this may re­
quire inter-processor communication and synchronization. Conversely, models on
different processors can be matched to data in their local memories without any
inter-processor communication. The latter observation leads to the SFMD model.

5 PROGRAMMING MODEL

We view support for SFMD as functionality to be added to an existing SIMD ma­
chine to increase its flexibility, scope, and power. As such, the SFMD programming
model should be an extension of the SIMD one. Given an SIMD architecture with
the local addressing and local conditional execution, SFMD programming is made
available at the assembly language level by adding three constructs:

distribute n tells the sequencer and PEs that the next n instructions are to be
distributed for independent execution on the PEs. We call the next n
instructions an SFMD block.

sync tells the individual PEs to suspend execution and signal the controller (barrier
synchronization). This is a no-op if not within an SFMD block.

branch-local one or more local branch instruction(s), including a loop construct;
the branch target must lie within the enclosing SFMD block. This is a
no-op if not within an SFMD block.

We further require that code within an SFMD block contain only references to PE­
local memory; none to global (sequencer) variables, to external memory or to the
local memory of another PE. It must also contain no inter-PE communication ..
When the PEs are independently executing an SFMD block, we say that the system
is in SFMD mode, and refer to normal execution as SIMD mode.

When programming in a data-parallel 'C'-like language for an SIMD machine, use of
SFMD functionality can be an optimization performed by the compiler, completely
hidden from the user. Variable type and usage analysis can determine for any given
block of code whether the constraints on non-local references are met, and emit

716 S. REHFUSS, D. HAMMERSTROM

code for SFMD execution if so. No new problems are introduced for debugging, as
SFMD execution is semantically equivalent to executing on each PE sequentially,
and can be executed this way during debugging.

To the programmer, SFMD ameliorates two inefficiencies o~SIMD programming: (i)
in conditionals, a PE need not be idle while other PEs execute the branch it didn't
take, and (ii) loops and recursions may execute a processor-dependent number of
times.

6 HARDWARE MODEL AND COST

We are interested in embedded, "delivery system" applications. Such systems must
have few chips; scalability to 100's or 1000's of chips is not an issue. Parallelism
is thus achieved with multiple PEs per chip. As off-chip I/O is always expensive
compared to computation!, such chips can contain only a relatively small number
of processors. Thus, as feature size decreases, area will go to local memory and
processor complexity, rather than more processors.

Adding SFMD functionality to an architecture whose PEs have local addressing
and local conditional execution is straightforward. Here we outline an example
implementation. Hardware for branch tests and decoding sequencer instructions
in the instruction register (IR) already exists. Local memory is suitable for local
addressing. A very simple "micro-sequencer" must be added, consisting essentially
of a program counter (PC) and instruction buffer (1M), and some simple decode
logic. The existing PE output path can be used for the barrier synchronization. A
1-bit path from the sequencer to each PE is added for interrupting local execution.

Execution of a distribute n instruction on a PE causes the next n instructions to
be stored sequentially in 1M, starting at the current address In the PC. The (n+ 1) 'st
instruction is executed in SPMD mode, it is typically either a branch-local to start
execution, or possibly a sync if the instructions are just being cached2 .

Almost the entire cost of providing SFMD functionality is silicon area used by the
1M. The 1M contains inner loop code, or model-driven conditional code, which is
likely to be small. For a 256 4-byte instruction buffer on the current ASI CNAPS
1064, having 64 PEs with 4KB memory each, this is about 11% of the chip area;
for a hypothetical 16 PE, 16K per PE chip of the same size, it is 3%. These
numbers are large, but as feature size decreases, the incremental cost of adding
SFMD functionality to an SIMD architecture quickly becomes small.

7 PERFORMANCE

What performance improvement may be expected by adding SFMD to SIMD? There
are two basic components, improvement on branches, and improvement on nested
loops, where the inner loop count varies locally.

U nnested (equiprobable) branches speed up most when the branch bodies have the
same size, with a factor of 2 improvement. For nested branches of depth d, the
factor is 2d, but these are probably unusual. An exception would be applying a
decision tree classifier in a data-parallel way.

To examine improvement on nested loops, suppose we have a set of N models (or
any independent tasks) to be evaluated en an architecture with P processors. On

IE.g., due to limited pin count, pad area, and slower clock off-chip.
2For example, if the distributed code is a subroutine that will be encountered again.

Model Matching and SFMD Computation 717

an SFMD architecture, we partition the set into P groups, assign each group to a
processor, and have each processor evaluate all the models in its group. If evaluating
the j'th model of the i'th group takes time t~;tmd), then the total time is

N;

Tsfmd = rriax "t(~fmd)
i=l ~ 1J

j=l

(1)

where Ni is the size of the i'th group, 2:::1 Ni = N. On an SIMD architecture, we
partition the set into r N! Pl groups of size P and sequentially evaluate each group
in parallel. Each group has a model that takes the most time to evaluate; SIMD
execution forces the whole group to have this time complexity. So, evaluating a
single group, Gi , takes time maxj t~;imd), where j indexes over the elements of the
group, 1 ::; j ::; P. The total time for SIMD execution is then

rNIPl
T L P (simd)

simd= maxt· ·
'-1 1J

i=l J-

(2)

Ignoring data-dependent branching and taking t~;imd) = t~;tmd) == tij, we see that
optimal (i, j)-indexing of the N models for either case is a bin packing problem. As
such, (i, j)-indexing will be heuristic, and we examine Tsimd!Tsfmd by simulation.
It should be clear that the expected improvement due to SFMD cannot be large
unless the outer loop count is large. So, for model matching, improvement on nested
loops is likely not an important factor, as usually only a few models are matched
at once.

To examine the possible magnitude of the effect in general, we look instead at
multiplication of an input vector by a large sparse matrix. Rows are partitioned
among the PEs, and each PE computes all the row-vector inner products for its set
of rows3 . Tsfmd is given by equation (1), with {tijl1 ::; j ::; Nd the set of all rows
for processor i. Tsimd is given by equation (2), with {tijl1 ::; j ::; P} the set of rows
executed by all processors at time i. Here tij is the time to perform a row-vector
inner product.

Under a variety of choices of matrix size (256 x 256 to 2048 x 2048), number of
processors (16,32,64), distribution of elements (uniform, clustered around the diag­
onal), and sparsity (fraction of nonzero elements from 0.001 to 0.4) we get that the
ratio Tsimd!Tsfmd decreases from around 2.2-2.7 for sparsities near 0.001, to 1.2
for sparsities near 0.06, and to 1.1 or less for more dense matrices (Figure 1). The
effect is thus not dramatic.

As an example of the potential utility of SFMD functionality for model matching,
we consider interpretation tree search (ITS), a technique used in vision4 . ITS is
a technique for establishing a correspondence between image and model features.
It consists essentially of depth-first search (DFS) , where a node on level d of the
tree corresponds to a pairing of image features with the first d model features.
The search is limited by a variety of unary and binary geometric constraints on
the allowed pairings. Search complexity implies small models are matched to small

3We assume the assignment of rows to PEs is independent of the number of nonzero
elements in the rows. If not, then for N » P, simply sorting rows by number of elements
and then assigning row i to processor i mod P is a good enough packing heuristic to make
Ts;tTld ~ T s / md .

4See (Grimson 1990) for a complete description of ITS and for the complexity results
alluded to here.

718

' .0

...
, ..
..,

!
" t
! 1 . '

~
1.6

1 . '

1.2

1
0.0001

spar .. Matzic ••

· . . · .'
"

• •• + :. . , ., .
•• t-. +. :,-.+.

: .. ~ ~

• • par •• . af_ . gnu · •

.....
:.n

• f :... •
. q ••

Figure 1: Sparse matrices: speedup vs. sparsity

numbers of data features, so distributing models and data to local memories is
practical.

To examine the effect of SFMD on this form of model matching, we performed some
simple simulations. To match a model with D features to a set of B data points,
we attempt to match the first model feature with each data point in order, with
some probability of success, Pmatch. If we succeed, we attempt to match the second
model feature with one of the remaining B-1 data points, and so on. If we match
all D features, we then check for global consistency of the correspondence, with
some probability of success, Pcheck. This procedure is equivalent to DFS in a tree
with branching factor B -d at level d of the tree, 1 ~ d ~ D, where the probability
of expanding any given node is Pmatch, and the probability of stopping the search
at any given leaf is 1 - Pcheck.

By writing the search as an iteration managing an explicit stack, one obtains a loop
with some common code and some code conditional on whether the current node
has any child nodes left to be expanded. The bulk of the "no-child" code deals with
leaf nodes, consisting of testing for global consistency and recording solutions. The
relative performance of SIMD and SFMD thus depends mainly on the probability,
Pleat, that the node being traversed is a leaf. If, for each iteration, the time for the
leaf code is taken to be 1, that for common code is t, and that for the non-leaf code
is k, then

t+k+1
TsimdlTstmd = t + (1- p)k + p' (3)

Panel 1 of figure 2 shows values of P from a variety of simulations of ITS, with
B,D E {8, 10, 12, 14, 16}, Pmatch E {0.1,0.2, liB}, Pcheck E {0,1}. Grimson (1990)
reports searches on realistic data of around 5000-10000 expansions; this corresponds
to P ~ 0.2 - 0.4. Panel 2 of figure 2 shows how equation 3 behaves for P in this
regime and for realistic values of k. We see speedups in the range 2-4 unless the
leaf code is very small. In fact, the code for global consistency checking is typically
larger than that for local consistency, corresponding to log2 k < 0.

8 OTHER USES

There are a number of uses for SFMD, other than model matching. First, common
"subroutines" involving branching may be kept in the 1M. Analysis of code for IEEE
floating point emulation on an SIMD machine shows an expected 2x improvement by

Model Matching and SFMD Computation

0.7

0.5

o 4

0.'

o l

0.1

protwlbl1it.y o f t.raver.lng a l .. t i n ITS

. ' .' .. . ' ". ~.

. .

719

.~ ...

Figure 2: DFS speedup. Panel 1 shows the probability, p, of traversing a leaf. Panel
2 plots equation 3 for realistic values of p and k, with t = 0.1.

using SFMD. Second, simple PE-local searches and sorts should show a significant,
sub-2x, improvement in expected time. Third, more speculatively, different PEs
can execute entirely different tasks by having the SFMD block consist of a single
(nested) if-then-else. This would allow a form of (highly synchronized) pipeline
parallelism by communicating results in SIMD mode after the end of the SFMD
block.

9 CONCLUSION

We have introduced the SFMD computation model as a natural way of implement­
ing the common task of model matching, and have shown how it extends SIMD
computing, giving it greater flexibility and power. SFMD functionality can easily,
and relatively cheaply, be added to existing SIMD designs already having a high
degree of processor autonomy. The addition can be made without altering the
user's programming model or environment. We have argued that technology trends
will force multiple-processor-per-chip systems to increase processor complexity and
memory, rather than increase the number of processors model per chip, and believe
that the SFMD model is a natural step in that evolution.

Acknowledgements

The first author gratefully acknowledges support under ARPA/ONR grants N00014-
94-C-0130, N00014-92-J-4062, and N00014-94-1-0071.

References

Grimson, W. E . L. (1990), Object Recognition by Computer: The Role of Geometric Con­
straints, MIT Press.

Hammerstrom, D. (1990), A VLSI architecture for high-performance, low-cost, on-chip
learning, in 'The Proceedings of the IJCNN'.

Suetens, P., Fua, P. & Hanson, A. J. (1992), 'Computational strategies for object recogni­
tion', Computing Surveys 24(1), 5 - 61.

