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Abstract 

In systems that process sensory data there is frequently a model 
matching stage where class hypotheses are combined to recognize a 
complex entity. We introduce a new model of parallelism, the Single 
Function Multiple Data (SFMD) model, appropriate to this stage. 
SFMD functionality can be added with small hardware expense to 
certain existing SIMD architectures, and as an incremental addition 
to the programming model. Adding SFMD to an SIMD machine 
will not only allow faster model matching, but also increase its 
flexibility as a general purpose machine and its scope in performing 
the initial stages of sensory processing. 

1 INTRODUCTION 

In systems that process sensory data there is frequently a post-classification stage 
where several independent class hypotheses are combined into the recognition of 
a more complex entity. Examples include matching word models with a string 
of observation probabilities, and matching visual object models with collections 
of edges or other features. Current parallel computer architectures for processing 
sensory data focus on the classification and pre-classification stages (Hammerstrom 
1990).This is reasonable, as those stages likely have the largest potential for speedup 
through parallel execution. Nonetheless, the model-matching stage is also suitable 
for parallelism, as each model may be matched independently of the others. 

We introduce a new style of parallelism, Single Function Multiple Data (SFMD), 
that is suitable for the model-matching stage. The handling of interprocessor syn­
chronization distinguishes the SFMD model from the SIMD and MIMD models: 
SIMD synchronizes implicitly at each instruction, SFMD synchronizes implicitly 
at conditional expression or loop boundaries, and MIMD synchronizes explicitly at 
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arbitrary inter-processor communication points. Compared to MIMD, the use of 
implicit synchronization makes SFMD easier to program and cheaper to implement. 
Compared to SIMD, the larger granularity of synchronization gives SFMD increased 
flexibility and power. 

SFMD functionality can be added with small hardware expense to SIMD architec­
tures already having a high degree of processor autonomy. It can be presented as an 
incremental addition to programmer's picture of the machine, and applied as a com­
piler optimization to existing code written in an SIMD version of 'C'. Adding SFMD 
to an SIMD machine will not only allow faster model matching, but also increase 
its flexibility as a general purpose machine, and increase its scope in performing the 
initial stages of sensory processing. 

2 SIMD ARCHITECTURE AND PROGRAMMING 

As background, we first review SIMD parallelism. In SIMD, multiple processing 
elements, or PEs, simultaneously execute identical instruction sequences, each pro­
cessing different data. The instruction stream is produced by a controller, or se­
quencer. Generally, each PE has a certain amount of local memory, which only it 
can access directly. All PEs execute a given -instruction in the stream at the same 
time, so are synchronized at each instruction. Thus synchronization is implicit, the 
hardware need not support it, and the programmer need (can) not manage it. SIMD 
architectures differ in the functionality of their PEs. If PEs can independently ad­
dress local memory at differing locations, rather than all having to access the same 
address at a given step, the architecture is said to have local addressing. If PEs can 
independently determine whether to execute a given instruction, rather than having 
this determined by the sequencer, the architecture has local conditional execution. 
Note that all PEs see the same instruction stream, yet a given PE executes only 
one branch of any if-then-else, and so must idle while other PEs execute the other 
branch. This is the cost of synchronizing at each instruction. 

3 MODEL MATCHING 

We view models as pieces of a priori knowledge, interrelating their components. 
Models are matched against some hypothesis set of possible features. Matching 
produces a correspondence between components of the model and elements of the 
hypothesis set, and also aligns the model and the set ("pose estimation" in vision, 
and "time-alignment" in speech). An essential fact is that, because models are 
known a priori, in cases where there are many models it is usually possible and 
profitable to construct an index into the set of models. Use of the index at runtime 
restricts the set of models that need actually be matched to a few, high-probability 
ones. 

Model-matching is a common stage in sensory data processing. Phoneme, character 
and word HMMs are models, where the hypothesis set is a string of observations 
and the matching process is either of the usual Viterbi or trellis procedures. For 
phonemes and characters, the HMMs used typically all have the same graph struc­
ture, so control flow in the matching process is not model-dependent and may be 
encoded in the instruction stream. Word models have differing structure, and con­
trol flow is model-dependent. In vision, model-matching has been used in a variety 
of complicated ways (cf. (Suetens, FUa & Hanson 1992)), for example, graph models 
may have constraints between node attribute values, to be resolved during matching. 
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4 DATA AND KNOWLEDGE PARALLELISM 

SIMD is a type of computer architecture. At the algorithm level, it corresponds 
to data parallelism. Data parallelism, applying the same procedure in parallel to 
multiple pieces of data, is the most common explicit parallelization technique. and is 
the essence of the Single Program Multiple Data (SPMD) programming model. On 
a distributed memory machine, SPMD can be stylized as "given a limited amount 
of (algorithmic) knowledge to be applied to a large piece of data, distribute the data 
and broadcast the knowledge" . 

In sensory processing systems, conversely, one may have a large amount of knowl­
edge (many models) that need to be applied to a (smallish) piece of data, for ex­
ample, a speech signal frame or segment, or a restricted region of an image. In this 
case, it makes sense to "distribute the knowledge and broadcast the data". Model­
matching often works well on an SIMD architecture, e.g. for identical phoneme 
models. However, when matching requires differing control flow between models, 
an SIMD implementation can be inefficient. 

Data and knowledge parallelism are asymmetrical, however, in two ways. First, 
all data must normally be processed, while there are usually indexing techniques 
that greatly restrict the number of models that actually must be matched. Sec­
ond, processing an array element frequently requires information about neighboring 
elements; when the data is partitioned among multiple processors, this may re­
quire inter-processor communication and synchronization. Conversely, models on 
different processors can be matched to data in their local memories without any 
inter-processor communication. The latter observation leads to the SFMD model. 

5 PROGRAMMING MODEL 

We view support for SFMD as functionality to be added to an existing SIMD ma­
chine to increase its flexibility, scope, and power. As such, the SFMD programming 
model should be an extension of the SIMD one. Given an SIMD architecture with 
the local addressing and local conditional execution, SFMD programming is made 
available at the assembly language level by adding three constructs: 

distribute n tells the sequencer and PEs that the next n instructions are to be 
distributed for independent execution on the PEs. We call the next n 
instructions an SFMD block. 

sync tells the individual PEs to suspend execution and signal the controller (barrier 
synchronization). This is a no-op if not within an SFMD block. 

branch-local one or more local branch instruction(s), including a loop construct; 
the branch target must lie within the enclosing SFMD block. This is a 
no-op if not within an SFMD block. 

We further require that code within an SFMD block contain only references to PE­
local memory; none to global (sequencer) variables, to external memory or to the 
local memory of another PE. It must also contain no inter-PE communication .. 
When the PEs are independently executing an SFMD block, we say that the system 
is in SFMD mode, and refer to normal execution as SIMD mode. 

When programming in a data-parallel 'C'-like language for an SIMD machine, use of 
SFMD functionality can be an optimization performed by the compiler, completely 
hidden from the user. Variable type and usage analysis can determine for any given 
block of code whether the constraints on non-local references are met, and emit 
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code for SFMD execution if so. No new problems are introduced for debugging, as 
SFMD execution is semantically equivalent to executing on each PE sequentially, 
and can be executed this way during debugging. 

To the programmer, SFMD ameliorates two inefficiencies o~SIMD programming: (i) 
in conditionals, a PE need not be idle while other PEs execute the branch it didn't 
take, and (ii) loops and recursions may execute a processor-dependent number of 
times. 

6 HARDWARE MODEL AND COST 

We are interested in embedded, "delivery system" applications. Such systems must 
have few chips; scalability to 100's or 1000's of chips is not an issue. Parallelism 
is thus achieved with multiple PEs per chip. As off-chip I/O is always expensive 
compared to computation!, such chips can contain only a relatively small number 
of processors. Thus, as feature size decreases, area will go to local memory and 
processor complexity, rather than more processors. 

Adding SFMD functionality to an architecture whose PEs have local addressing 
and local conditional execution is straightforward. Here we outline an example 
implementation. Hardware for branch tests and decoding sequencer instructions 
in the instruction register (IR) already exists. Local memory is suitable for local 
addressing. A very simple "micro-sequencer" must be added, consisting essentially 
of a program counter (PC) and instruction buffer (1M), and some simple decode 
logic. The existing PE output path can be used for the barrier synchronization. A 
1-bit path from the sequencer to each PE is added for interrupting local execution. 

Execution of a distribute n instruction on a PE causes the next n instructions to 
be stored sequentially in 1M, starting at the current address In the PC. The (n+ 1) 'st 
instruction is executed in SPMD mode, it is typically either a branch-local to start 
execution, or possibly a sync if the instructions are just being cached2 . 

Almost the entire cost of providing SFMD functionality is silicon area used by the 
1M. The 1M contains inner loop code, or model-driven conditional code, which is 
likely to be small. For a 256 4-byte instruction buffer on the current ASI CNAPS 
1064, having 64 PEs with 4KB memory each, this is about 11% of the chip area; 
for a hypothetical 16 PE, 16K per PE chip of the same size, it is 3%. These 
numbers are large, but as feature size decreases, the incremental cost of adding 
SFMD functionality to an SIMD architecture quickly becomes small. 

7 PERFORMANCE 

What performance improvement may be expected by adding SFMD to SIMD? There 
are two basic components, improvement on branches, and improvement on nested 
loops, where the inner loop count varies locally. 

U nnested (equiprobable) branches speed up most when the branch bodies have the 
same size, with a factor of 2 improvement. For nested branches of depth d, the 
factor is 2d, but these are probably unusual. An exception would be applying a 
decision tree classifier in a data-parallel way. 

To examine improvement on nested loops, suppose we have a set of N models (or 
any independent tasks) to be evaluated en an architecture with P processors. On 

IE.g., due to limited pin count, pad area, and slower clock off-chip. 
2For example, if the distributed code is a subroutine that will be encountered again. 
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an SFMD architecture, we partition the set into P groups, assign each group to a 
processor, and have each processor evaluate all the models in its group. If evaluating 
the j'th model of the i'th group takes time t~;tmd), then the total time is 

N; 

Tsfmd = rriax "t(~fmd) 
i=l ~ 1J 

j=l 

(1) 

where Ni is the size of the i'th group, 2:::1 Ni = N. On an SIMD architecture, we 
partition the set into r N! Pl groups of size P and sequentially evaluate each group 
in parallel. Each group has a model that takes the most time to evaluate; SIMD 
execution forces the whole group to have this time complexity. So, evaluating a 
single group, Gi , takes time maxj t~;imd), where j indexes over the elements of the 
group, 1 ::; j ::; P. The total time for SIMD execution is then 

rNIPl 
T L P (simd) 

simd= maxt· · 
'-1 1J 

i=l J-

(2) 

Ignoring data-dependent branching and taking t~;imd) = t~;tmd) == tij, we see that 
optimal (i, j)-indexing of the N models for either case is a bin packing problem. As 
such, (i, j)-indexing will be heuristic, and we examine Tsimd!Tsfmd by simulation. 
It should be clear that the expected improvement due to SFMD cannot be large 
unless the outer loop count is large. So, for model matching, improvement on nested 
loops is likely not an important factor, as usually only a few models are matched 
at once. 

To examine the possible magnitude of the effect in general, we look instead at 
multiplication of an input vector by a large sparse matrix. Rows are partitioned 
among the PEs, and each PE computes all the row-vector inner products for its set 
of rows3 . Tsfmd is given by equation (1), with {tijl1 ::; j ::; Nd the set of all rows 
for processor i. Tsimd is given by equation (2), with {tijl1 ::; j ::; P} the set of rows 
executed by all processors at time i. Here tij is the time to perform a row-vector 
inner product. 

Under a variety of choices of matrix size (256 x 256 to 2048 x 2048), number of 
processors (16,32,64), distribution of elements (uniform, clustered around the diag­
onal), and sparsity (fraction of nonzero elements from 0.001 to 0.4) we get that the 
ratio Tsimd!Tsfmd decreases from around 2.2-2.7 for sparsities near 0.001, to 1.2 
for sparsities near 0.06, and to 1.1 or less for more dense matrices (Figure 1). The 
effect is thus not dramatic. 

As an example of the potential utility of SFMD functionality for model matching, 
we consider interpretation tree search (ITS), a technique used in vision4 . ITS is 
a technique for establishing a correspondence between image and model features. 
It consists essentially of depth-first search (DFS) , where a node on level d of the 
tree corresponds to a pairing of image features with the first d model features. 
The search is limited by a variety of unary and binary geometric constraints on 
the allowed pairings. Search complexity implies small models are matched to small 

3We assume the assignment of rows to PEs is independent of the number of nonzero 
elements in the rows. If not, then for N » P, simply sorting rows by number of elements 
and then assigning row i to processor i mod P is a good enough packing heuristic to make 
Ts;tTld ~ T s / md . 

4See (Grimson 1990) for a complete description of ITS and for the complexity results 
alluded to here. 
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Figure 1: Sparse matrices: speedup vs. sparsity 

numbers of data features, so distributing models and data to local memories is 
practical. 

To examine the effect of SFMD on this form of model matching, we performed some 
simple simulations. To match a model with D features to a set of B data points, 
we attempt to match the first model feature with each data point in order, with 
some probability of success, Pmatch. If we succeed, we attempt to match the second 
model feature with one of the remaining B-1 data points, and so on. If we match 
all D features, we then check for global consistency of the correspondence, with 
some probability of success, Pcheck. This procedure is equivalent to DFS in a tree 
with branching factor B -d at level d of the tree, 1 ~ d ~ D, where the probability 
of expanding any given node is Pmatch, and the probability of stopping the search 
at any given leaf is 1 - Pcheck. 

By writing the search as an iteration managing an explicit stack, one obtains a loop 
with some common code and some code conditional on whether the current node 
has any child nodes left to be expanded. The bulk of the "no-child" code deals with 
leaf nodes, consisting of testing for global consistency and recording solutions. The 
relative performance of SIMD and SFMD thus depends mainly on the probability, 
Pleat, that the node being traversed is a leaf. If, for each iteration, the time for the 
leaf code is taken to be 1, that for common code is t, and that for the non-leaf code 
is k, then 

t+k+1 
TsimdlTstmd = t + (1- p)k + p' (3) 

Panel 1 of figure 2 shows values of P from a variety of simulations of ITS, with 
B,D E {8, 10, 12, 14, 16}, Pmatch E {0.1,0.2, liB}, Pcheck E {0,1}. Grimson (1990) 
reports searches on realistic data of around 5000-10000 expansions; this corresponds 
to P ~ 0.2 - 0.4. Panel 2 of figure 2 shows how equation 3 behaves for P in this 
regime and for realistic values of k. We see speedups in the range 2-4 unless the 
leaf code is very small. In fact, the code for global consistency checking is typically 
larger than that for local consistency, corresponding to log2 k < 0. 

8 OTHER USES 

There are a number of uses for SFMD, other than model matching. First, common 
"subroutines" involving branching may be kept in the 1M. Analysis of code for IEEE 
floating point emulation on an SIMD machine shows an expected 2x improvement by 
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Figure 2: DFS speedup. Panel 1 shows the probability, p, of traversing a leaf. Panel 
2 plots equation 3 for realistic values of p and k, with t = 0.1. 

using SFMD. Second, simple PE-local searches and sorts should show a significant, 
sub-2x, improvement in expected time. Third, more speculatively, different PEs 
can execute entirely different tasks by having the SFMD block consist of a single 
(nested) if-then-else. This would allow a form of (highly synchronized) pipeline 
parallelism by communicating results in SIMD mode after the end of the SFMD 
block. 

9 CONCLUSION 

We have introduced the SFMD computation model as a natural way of implement­
ing the common task of model matching, and have shown how it extends SIMD 
computing, giving it greater flexibility and power. SFMD functionality can easily, 
and relatively cheaply, be added to existing SIMD designs already having a high 
degree of processor autonomy. The addition can be made without altering the 
user's programming model or environment. We have argued that technology trends 
will force multiple-processor-per-chip systems to increase processor complexity and 
memory, rather than increase the number of processors model per chip, and believe 
that the SFMD model is a natural step in that evolution. 
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