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Abstract 

A technique for segmenting sounds using processing based on mam­
malian early auditory processing is presented. The technique is 
based on features in sound which neuron spike recording suggests 
are detected in the cochlear nucleus. The sound signal is band­
passed and each signal processed to enhance onsets and offsets. 
The onset and offset signals are compressed, then clustered both in 
time and across frequency channels using a network of integrate­
and-fire neurons. Onsets and offsets are signalled by spikes, and 
the timing of these spikes used to segment the sound. 

1 Background 

Traditional speech interpretation techniques based on Fourier transforms, spectrum 
recoding, and a hidden Markov model or neural network interpretation stage have 
limitations both in continuous speech and in interpreting speech in the presence 
of noise, and this has led to interest in front ends modelling biological auditory 
systems for speech interpretation systems (Ainsworth and Meyer 92; Cosi 93; Cole 
et al 95). 

Auditory modelling systems use similar early auditory processing to that used in 
biological systems. Mammalian auditory processing uses two ears, and the incoming 
signal is filtered first by the pinna (external ear) and the auditory canal before it 
causes the tympanic membrane (eardrum) to vibrate. This vibration is then passed 
on through the bones of the middle ear to the oval window on the cochlea. Inside 
the cochlea, the pressure wave causes a pattern of vibration to occur on the basilar 
membrane. This appears to be an active process using both the inner and outer hair 
cells of the organ of Corti. The movement is detected by the inner hair cells and 
turned into neural impulses by the neurons of the spiral ganglion. These pass down 
the auditory nerve, and arrive at various parts of the cochlear nucleus. From there, 
nerve fibres innervate other areas: the lateral and medial nuclei of the superior olive, 
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and the inferior colliculus, for example. (See (Pickles 88)). 

Virtually all modern sound or speech interpretation systems use some form of band­
pass filtering, following the biology as far as the cochlea. Most use Fourier trans­
forms to perform a calculation of the energy in each band over some time period, 
usually between 25 and 75 ms. This is not what the cochlea does. Auditory mod­
elling front ends differ in the extent and length to which they follow animal early 
auditory processing, but the term generally implies at least that wideband filters 
are used, and that high temporal resolution is maintained in the initial stages. This 
means the use of filtering techniques. rather than Fourier transforms in the bandpass 
stage. Such filtering systems have been implemented by Patterson and Holdsworth 
(Patterson and Holdsworth 90; Slaney 93), and placed directly in silicon (Lazzaro 
and Mead 89; Lazzaro et al 93; Liu et al 93; Fragniere and van Schaik 94). 

Some auditory models have moved beyond cochlear filtering. The inner hair cell 
has been modelled by either simple rectification (Smith 94) or has been based on 
the work of (Meddis 88) for example (Patterson and Holdsworth 90; Cosi 93; Brown 
92). Lazzaro has experimented with a silicon version of Licklider's autocorrelation 
processing (Licklider 51; Lazzaro and Mead 89). Others such as (Wu et al 1989: 
Blackwood et al1990; Ainsworth and Meyer 92; Brown 92; Berthommier 93; Smith 
94) have considered the early brainstem nuclei, and their possible contribution, 
based on the neurophysiology of the different cell types (Pickles 88; Blackburn and 
Sachs 1989; Kim et al 90). 

Auditory model-based systems have yet to find their way into mainstream speech 
recognition systems (Cosi 93). The work presented here uses auditory modelling 
up to onset cells in the cochlear nucleus. It adds a temporal neural network to 
clean up the segmentation produced. This part has been filed as a patent (Smith 
95). Though the system has some biological plausibility, the aim is an effective 
data-driven segmentation technique implement able in silicon. 

2 Techniques used 

Digitized sound was applied to an auditory front end, (Patterson and Holdsworth 
90), which bandpassed the sound into channels each with bandwidth 24.7{4.37Fr; + 
I)Hz, where Fe is the centre frequency (in KHz) of the band (Moore and Glasberg 
83). These were rectified, modelling the effect of the inner hair cells. The signals 
produced bear some resemblance to that in the auditory nerve. The real system 
has far more channels and each nerve channel carries spike-coded information. The 
coding here models the signal in a population of neighboring auditory nerve fibres. 

2.1 The onset-offset filter 

The signal present in the auditory nerve is stronger near the onset of a tone than 
later (Pickles 88). This effect is much more pronounced in certain cell types of the 
cochlear nucleus. These fire strongly just after the onset of a sound in the band to 
which they are sensitive, and are then silent. This emphasis on onsets was modelled 
by convolving the signal in each band with a filter which computes two averages, a 
more recent one, and a less recent one, and subtracts the less recent one from the 
more recent one. One biologically possible justification for this is to consider that 
a neuron is receiving the same driving input twice, one excitatorily, and the other 
inhibitorily; the excitatory input has a shorter time-constant than the inhibitory 
input. Both exponentially weighted averages, and averages formed using a Gaussian 
filter have been tried (Smith 94), but the former place too much emphasis on the 
most recent part of the signal, making the latter more effective. 
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The filter output for input signal s(x) is 

O(t. k, 'f') = lot (f(t - x, k) - f(t - x, k/,r))s(x)dx (1) 

where f(x, y) = vY exp( -yx2 ). k and 'r determine the rise and fall times of the 
pulses of sOlmd that the system is sensitive to. We used A: = 1000, 'r = 1.2, so 
that the SD of the Gaussians are 24.49ms and 22.36ms. The convolving filter has 
a positive peak at O. crosses 0 at 22.39ms. and is then negative. With these values. 
the system is sensitive to energy rises and falls which occm in the envelopes of 
everyday sounds. A positive onset-offset signal implies that the bandpassed signal is 
increasing in intensity, and a negative onset-offset signal implies that it is decreasing 
in intensity. The convolution used is a sound analog of the difference of Gaussians 
operator used to extract black/white and white/black edges in monochrome images 
(MalT and Hildreth 80). In (Smith 94) we performed sOlmd segmentation directly 
on this signal. 

2.2 Compressing the onset-offset signal 

The onset-offset signal was divided into two positive-going signals, an onset signal 
consisting of the positive-going part, and an offset signal consisting of the inverted 
negative-going part. Both were compressed logarithmically (where log(x) was taken 
as 0 for 0 S x S 1). This increases the dynamical range of the system, and models 
compressive biological effects. The compressed onset signal models the output of a 
population of onset cells. This technique for producing an onset signal is related to 
that of (Wu et al 1989: Cosi 93). 

2.3 The integrate-and-fire neural network 

To segment the sound using the onset and offset signals, they need to be integrated 
across frequency bands and across time. This temporal and tonotopic clustering 
was achieved using a network of integrate-and-fire units. An integrate-and-fire unit 
accumulates its weighted input over time. The activity of the unit A. is initially O. 
and alters according to 

dA 
- = I(t) - "YA 
dt 

(2) 

where I(t) is the input to the nemon and "Y, the dissipation, describes the leakiness 
of the integration. When A reaches a threshold. the unit fires (i.e. emits a pulse). 
and A is reset to O. After firing, there is a period of insensitivity to input, called the 
refractory period. Such nemons are discussed in. e.g. (Mirolla and Strogatz 90). 

One integrate-and-fire neuron was used per charmel: this neuron received input ei­
ther from a single charmel, or from a set of adjacent charmels. all with equal positive 
weighting. The output of each neuron was fed back to a set of adjacent neurons, 
again with a fixed positive weight, one time step (here 0.5ms) later. Because of the 
leaky nature of the accumulation of activity, excitatory input to the neuron arriving 
when its activation is near' threshold has a lar'ger effect on the next firing time than 
excitatory input arriving when activation is lower. Thus, if similar input is applied 
to a set of neurons in adjacent charmels. the effect of the inter-neuron connections 
is that when the first one fires, its neighbors fire almost immediately. This allows 
a network of such neurons to cluster the onset or offset signals, producing a sharp 
burst of spikes across a number of charmels providing unambiguous onsets or offsets. 

The external and internal weights of the network were adjusted so that onset or 
offset input alone allowed neurons to fire, while internal input alone was not enough 
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to cause firing. The refractory period used was set to 50ms for the onset system, 
and 5ms for the offset system. For the onset system, the effect was to produce sharp 
onset firing responses across adjacent channels in response to a sudden increase in 
energy in some channels, thus grouping onsets both tonotopically and temporally. 
This is appropriate for onsets, as these are generally brief and clearly marked. The 
output of this stage we call the onset map. Offsets tend to be more gradual. This 
is due to physical effects: for example, a percussive sound will start suddenly, as 
the vibrating element starts to move. but die away slowly as the vibration ceases 
(see (Gaver 93) for a discussion). Even when the vibration does stop suddenly. the 
sound will die away more slowly due to echoes. Thus we cannot reliably mark the 
offset of a sound: instead. we reduce the refractory period of the offset neurons, and 
produce a train of pulses marking the duration of the offset in this channel. We call 
the output of this stage the offset map. 

3 Results 

As the technique is entirely data-driven. it can be applied to sound from any source. 
It has been applied to both speech and musical sounds. Figure 1 shows the effect 
of applying the techniques discussed to a short piece of speech. Fig lc shows that 
the neural network integrates the onset timings across the channels, allowing these 
onsets to be used for segmentation. The simplest technique is to divide up the 
continuous speech at each onset: however,to ensure that the occasional onset in a 
single channel does not confuse the system. and that onsets which occur near to 
each other do not result in very short segments we demanded that a segmentation 
boundary have at least 6 onsets inside a period of lOms. and the minimum segment 
length was set to 25ms. 

The utterance Ne'Uml information processing systems has phonetic representation: 

/ njtlrl: anfarme Ian prosc:salJ ststalllS / 

and is segmented into the following 19 segments: 

/n/, jtl/, /r/, /la/, /a/, /nf/. /arm/, /e/, /I/, /an/, /pro/, /os/, /c:s/ , /aIJ/, /s/, 
/t/, /st/, /am/, /s/ 

The same text spoken more slowly (over 4.38s, rather than 2.31s) has phonetic 
representation: 

/ njural:anftrmeIanprosc:stIJ ststams / 

Segmenting using this technique gives the following 25 segments: 

/n/ , /ju/ , /u/, /r/. /a/ , /al/, /1/, / /, /an/, /f/ , /um/, /e/, /I/. /an/, /n:/, /pr/, 
/ro/, /os/, /c:s/, /tIJ/ , /s/, /t/ , /st/, /am/, /s/ 

Although some phonemes are broken between segments, the system provides effec­
tive segmentation, and is relatively insensitive to speech rate. The system is also 
effective at finding speech inside certain types of noise (such as motor-bike noise) , 
as can be seen in fig Ie and f. 

The system has been used to segment sound from single musical instruments. Where 
these have clear breaks between notes this is straightforward: in (Smith 94) correct 
segmentation was achieved directly from the onset-offset signal but was not achieved 
for slurred sounds, in which the notes change smoothly. As is visible in figure 2c, 
the onsets here are clear using the network, and the segmentation produced is near-
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Figure 1: (a-d):Onset and Offset maps from author saying Neural information pro­
cessing systems rapidly. a: envelope of original sound. b: onset map. from 28 
channels. from 100Hz-6KHz. Onset filter parameters as in text; one neuron per 
channel, with no interconnection. Neuron refractory period is 50ms. c: as b , but 
network has input applied to 6 adjacent channels, and internal feedback to 10 chan­
nels. d: offset map produced similarly, with refractory period 5ms. e: envelope of 
say, that's a nice bike with motorbike noise in background (lines mark utterance). 
f, g: onset, offset maps for e. 

perfect. Best results were obtained here when the input to the network is not spread 
across channels. 

4 Conclusions and further work 

An effective data driven segmentation technique based on onset feature detection 
and using integrate-and-fire neurons has been demonstrated. The system is rel­
atively immune to broadband noise. Segmentation is not an end in itself: the 
effectiveness of any technique will depend on the eventual application. 
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Figure 2: a: slurred flute sound. with vertical lines showing boundary between 
notes. b: onsets found using a single neuron per channel, and no interconnection. 
c: as b, but with internal feedback from each channel to 16 adjacent channels d: 
offsets found with refractory period 5ms. 

The segmentation is currently not using the information on which bands the onsets 
occur in. We propose to extend this work by combining the segmentation described 
here with work streaming bands sharing same-frequency amplitude modulation. 
The aim of this is to extract sound segments from some subset of the bands, allowing 
segmentation and streaming to run concurrently. 
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