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Abstract 

We introduce a novel algorithm for factorial learning, motivated 
by segmentation problems in computational vision, in which the 
underlying factors correspond to clusters of highly correlated input 
features. The algorithm derives from a new kind of competitive 
clustering model, in which the cluster generators compete to ex­
plain each feature of the data set and cooperate to explain each 
input example, rather than competing for examples and cooper­
ating on features, as in traditional clustering algorithms. A natu­
ral extension of the algorithm recovers hierarchical models of data 
generated from multiple unknown categories, each with a differ­
ent, multiple causal structure. Several simulations demonstrate 
the power of this approach. 

1 INTRODUCTION 

Unsupervised learning is the search for structure in data. Most unsupervised learn­
ing systems can be viewed as trying to invert a particular generative model of the 
data in order to recover the underlying causal structure of their world. Differ­
ent learning algorithms are then primarily distinguished by the different generative 
models they embody, that is, the different kinds of structure they look for. 

Factorial learning, the subject of this paper, tries to find a set of independent causes 
that cooperate to produce the input examples. We focus on strong factorial learning, 
where the goal is to recover the actual degrees of freedom responsible for generating 
the observed data, as opposed to the more general weak approach, where the goal 
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Figure 1: A simple factorial learning problem. The learner observes an articulated 
hand in various configurations, with each example specified by the positions of 16 
tracked features (shown as black dots). The learner might recover four underlying 
factors, corresponding to the positions of the fingers, each of which claims respon­
siblity for four features of the data set. 

is merely to recover some factorial model that explains the data efficiently. Strong 
factorial learning makes a claim about the nature of the world, while weak facto­
rial learning only makes a claim about the nature of the learner's representations 
(although the two are clearly related). Standard subspace algorithms, such as prin­
cipal component analysis, fit a linear, factorial model to the input data, but can 
only recover the true causal structure in very limited situations, such as when the 
data are generated by a linear combination of independent factors with significantly 
different variances (as in signal-from-noise separation). 

Recent work in factorial learning suggests that the general problem of recovering the 
true, multiple causal structure of an arbitrary, real-world data set is very difficult, 
and that specific approaches must be tailored to specific, but hopefully common, 
classes of problems (Foldiak, 1990; Saund, 1995; Dayan and Zemel, 1995). Our 
own interest in multiple cause learning was motivated by segmentation problems in 
computational vision, in which the underlying factors correspond ideally to disjoint 
clusters of highly correlated input features. Examples include the segmentation 
of articulated objects into functionally independent parts, or the segmentation of 
multiple-object motion sequences into tracks of individual objects. These problems, 
as well as many other problems of pattern recognition and analysis, share a common 
set of constraints which makes factorial learning both appropriate and tractable. 
Specifically, while each observed example depends on some combination of several 
factors, anyone input feature always depends on only one such factor (see Figure 
1). Then the generative model decomposes into independent sets of functionally 
grouped input features, or functional parts (Tenenbaum, 1994). 

In this paper, we propose a learning algorithm that extracts these functional parts. 
The key simplifying assumption, which we call the membership constmint, states 
that each feature belongs to at most one functional part, and that this membership 
is constant over the set of training examples. The membership constraint allows 
us to treat the factorial learning problem as a novel kind of clustering problem. 
The cluster generators now compete to explain each feature of the data set and 
cooperate to explain each input example, rather than competing for examples and 
cooperating on features, as in traditional clustering systems such as K-means or 
mixture models. The following sections discuss the details of the feature cluster­
ing algorithm for extracting functional parts, a simple but illustrative example, and 
extensions. In particular, we demonstrate a natural way to relax the strict member­
ship constraint and thus learn hierarchical models of data generated from multiple 
unknown categories, each with a different multiple causal structure. 
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2 THE FEATURE CLUSTERING ALGORITHM 

Our algorithm for extracting functional parts derives from a statistical mechanics 
formulation of the soft clustering problem (inspired by Rose, Gurewitz, and Fox, 
1990; Hinton and Zemel, 1994). We take as input a data set {xt}, with I examples 
of J real-valued features. The best K-cluster representation of these J features is 
given by an optimal set of cluster parameters, {Ok}, and an optimal set of assign­
ments, {Pi/.J. The assignment Pjk specifies the probability of assigning feature j 
to cluster k, and depends directly on Ejk = 2:i(Xj'l - fj~)2, the total squared dif­
ference (over the I training examples) between the observed feature values x}il and 
cluster k's predictions fj~. The parameters Ok define cluster k's generative model, 
and thus determine the predictions fj~(Ok). 

If we limit functional parts to clusters of linearly correlated features, then the 
appropriate generative model has fj~ = WjkYkil + Uj, with cluster parameters 
Ok = {Ykil , Wjk, Uj} to be estimated. That is, for each example i, part k predicts the 
value of input feature j as a linear function of some part-specific factor Ykil (such as 
finger position in Figure 1). For the purposes of this paper, we assume zero-mean 
features and ignore the Uj terms. Then Ejk = 2:i(Xj'l - WjkYkil )2. 

The optimal cluster parameters and assignments can now be found by maximizing 
the complete log likelihood of the data given the K-cluster representation, or equiv­
alently, in the framework of, statistical mechanics, by minimizing the free energy 

1 1 
F = E - -H = LLPjk(Ejk + -logpjk) (1) 

(3 j k (3 

subject to the membership constraints, 2:k pjk = 1, (\lj). Minimizing the energy, 

E = L LPjkEjk, (2) 
j k 

reduces the expected reconstruction error, leading to more accurate representations. 
Maximizing the entropy, 

H = - LLPjklogPjk, (3) 
j k 

distributes responsibility for each feature across many parts, thus decreasing the 
independence of the parts and leading to simpler representations (with fewer degrees 
of freedom). In line with Occam's Razor, minimizing the energy-entropy tradeoff 
finds the representation that, at a particular temperature 1/(3, best satisfies the 
conflicting requirements of low error and low complexity. 

We minimize the free energy with a generalized EM procedure (Neal and Hinton, 
1994), setting derivatives to zero and iterating the resulting update equations: 

e-(3Ejk 

Pjk = 2:k e-(3Ejk 

Ykil LPjkWjkXj'l 
j 

Wjk = Lxj'lYtl. 

(4) 

(5) 

(6) 
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This update procedure assumes a normalization step Ykil = Ykil /(Eil (y(l)2)1/2 in 
each iteration, because without some additional constraint on the magnitudes of 
yt l (or Wjk), inverting the generative model fj~ = WjkYkil is an ill-posed problem. 

This algorithm maps naturally onto a simple network architecture. The hidden unit 
activities, representing the part-specific factors Ykil , are computed from the obser-
vations xyl via bottom-up weights PjkWjk, normalized, and multiplied by top-down 
weights Wjk to generate the network's predictions fj~. The weights adapt accord­
ing to a hybrid learning rule, with Wjk determined by a Hebb rule (as in subspace 
learning algorithms), and pjk determined by a competitive, softmax function of the 
reconstruction error Ejk (as in soft mixture models). 

3 LEARNING A HIERARCHY OF PARTS 

The following simulation illustrates the algorithm's behavior on a simple, part seg­
mentation task. The training data consist of 60 examples with 16 features each, 
representing the horizontal positions of 16 points on an articulated hand in various 
configurations (as in Figure 1). The data for this example were generated by a 
hierarchical, random process that produced a low correlation between all 16 fea­
tures, a moderate correlation between the four features on each finger, and a high 
correlation between the two features on each joint (two joints per finger). To fully 
explain this data set, the algorithm should be able to find a corresponding hierarchy 
of increasingly complex functional part representations. 

To evaluate the network's representation of this data set, we inspect the learned 
weights PjkWjk, which give the total contribution of feature j to part k in (5) . 
In Figure 2, these weights are plotted for several different values of /3, with gray 
boxes indicating zero weights, white indicating strong positive weights, and black 
indicating strong negative weights. The network was configured with K = 16 part 
units, to ensure that all potential parts could be found. When fewer than K distinct 
parts are found, some of the cluster units have identical parameters (appearing 
as identical columns in Figure 2). These results were generated by deterministic 
annealing, starting with /3 « 1, and perturbing the weights slightly each time /3 
was increased, in order to break symmetries. 

Figure 2 shows that the number of distinct parts found increases with /3, as more 
accurate (and more complex) representations become favored. In (4), we see that 
/3 controls the number of distinct parts via the strength of the competition for fea­
tures. At /3 = 0, every part takes equal responsibility for every feature. Without 
competition, there can be no diversity, and thus only one distinct part is discovered 
at low /3, corresponding to the whole hand (Figure 2a). As /3 increases, the compe­
tition for features gets stiffer, and parts split into their component subparts. The 
network finds first four distinct parts (with four features each), corresponding to in­
dividual fingers (Figure 2c), and then eight distinct parts (with two features each), 
corresponding to individual joints (Figure 2d). Figure 2b shows an intermediate 
representation, with something between one and four parts. Four distinct columns 
are visible, but they do not cleanly segregate the features. 

Figure 3 plots the decrease in mean reconstruction error (expressed by the energy E) 
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Figure 2: A hierarchy of functional part representations, parameterized by {3. 
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Figure 3: A phase diagram distinguishes true parts (a, c, d) from spurious ones (b). 
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as (3 increases and more distinct parts emerge. Notice that within the three stable 
phases corresponding to good part decompositions (Figures 2a, 2c, 2d), E remains 
practically constant over wide variations in (3. In contrast, E varies rapidly at 
the boundaries between phases, where spurious part structure appears (Figure 2b). 
In general, good representations should lie at stable points of this phase diagram, 
where the error-complexity tradeoff is robust. Thus the actual number of parts in 
a particular data set, as well as their hierarchical structure, need not be known in 
advance, but can be inferred from the dynamics of learning. 

4 LEARNING MULTIPLE CATEGORIES 

Until this point, we have assumed that each feature belongs to at most one part over 
the entire set of training examples, and tried to find the single K -part model that 
best explains the data as a whole. But the notion that a single model must explain 
the whole data set is quite restrictive. The data may contain several categories of 
examples, each characterized by a different pattern of feature correlations, and then 
we would like to learn a set of models, each capturing the distinctive part structure 
of one such category. Again we are motivated by human vision, which easily recog­
nizes many categories of motion defined by high-level patterns of coordinated part 
movement, such as hand gestures and facial expressions. 

If we know which examples belong to which categories, learning multiple models is 
no harder than learning one, as in the previous section. A separate model can be fit 
to each category m of training examples, and the weights P'j'k wjk are frozen to pro­
duce a set of category templates. However, if the category identities are unknown, 
we face a novel kind of hierarchical learning task. We must simultaneously discover 
the optimal clustering of examples into categories, as well as the optimal cluster­
ing of features into parts within each category. We can formalize this hierarchical 
clustering problem as minimizing a familiar free energy, 

(7) 

in which gim. specifies the probability of assigning example i to category m, and Tim. 
is the associated cost. This cost is itself the free energy of the mth K -part model 
on the ith example, 

Tim = L LP'j'k(Ejk' + _(31 logp'j'k) , 
j k 

(8) 

in which P'j'k specifies the probability of assigning feature j to part k within category 
m, and Ejk' = (xj - Wjky~m.)2 is the usual reconstruction error from Section 2. 

This algorithm was tested on a data set of 256 hand configurations with 20 features 
each (similar to those in Figure 1), in which each example expresses one of four 
possible "gestures", i.e. patterns of feature correlation. As Table 1 indicates, the 
five features on each finger are highly correlated across the entire data set, while 
variable correlations between the four fingers distinguish the gesture categories. 
Note that a single model with four parts explains the full variance of the data just 
as well as the actual four-category generating process. However, most of the data 
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Table 1: The 20 features are grouped into either 2, 3, or 4 functional parts. 

Examples No. of parts Part composition 
1- 64 2 1 10 11----20 

65 - 127 3 1 10 11-15 16--20 
128 - 192 3 1-5 6-10 11 20 
193 - 256 4 1-5 6--10 11-15 16--20 

can also be explained by one of several simpler models, making the learner's task a 
challenging balancing act between accuracy and simplicity. 

Figure 4 shows a typical representation learned for this data set. The algorithm 
was configured with M = 8 category models (each with K = 8 parts), but only four 
distinct categories of examples are found after annealing on a (holding {3 constant), 
and their weights prk wjk are depicted in Figure 4a. Each category faithfully captures 
one of the actual generating categories in Table 1, with the correct number and 
composition of functional parts. Figure 4b depicts the responsibility gi'm that each 
learned category m takes for each feature i. Notice the inevitable effect of a bias 
towards simpler representations. Many examples are misassigned relative to Table 1, 
when categories with fewer degrees of freedom than their true generating categories 
can explain them almost as accurately. 

5 CONCLUSIONS AND FUTURE DIRECTIONS 

The notion that many data sets are best explained in terms of functionally inde­
pendent clusters of correlated features resonates with similar proposals of Foldiak 
(1990), Saund (1995), Hinton and Zemel (1994), and Dayan and Zemel (1995). Our 
approach is unique in actually formulating the learning task as a clustering problem 
and explicitly extracting the functional parts of the data. Factorial learning by clus­
tering features has three principal advantages. First, the free energy cost function 
for clustering yields a natural complexity scale-space of functional part representa­
tions, parameterized by {3. Second, the generalized EM learning algorithm is simple 
and quick, and maps easily onto a network architecture. Third, by nesting free 
energies, we can seamlessly compose objective functions for quite complex, hierar­
chical unsupservised learning problems, such as the multiple category, multiple part 
mixture problem of Section 4. 

The primary limitation of our approach is that when the generative model we as­
sume does not in fact apply to the data, the algorithm may fail to recover any 
meaningful structure. In ongoing work, we are pursuing a more flexible generative 
model that allows the underlying causes to compete directly for arbitrary feature­
example pairs ij, rather than limiting competition only to features j, as in Section 
2, or only to examples i, as in conventional mixture models, or segregating compe­
tition for examples and features into hierarchical stages, as in Section 4. Because 
this introduces many more degrees of freedom, robust learning will require addi­
tional constraints, such as temporal continuity of examples or spatial continuity of 
features. 
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Figure 4: Learning multiple categories, each with a different part structure. 

Acknowledgements 

Both authors are Howard Hughes Medical Institute Predoctoral Fellows. We thank 
Whitman Richards, Yair Weiss, and Stephen Gilbert for helpful discussions. 

References 

Dayan, P. and Zemel, R. S. (1995). Competition and multiple cause models. Neural 
Computation, in press. 

Foldiak, P. (1990). Forming sparse representations by local anti-hebbian learning. Biolog­
ical Cybernetics 64, 165-170. 

Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length and 
Helmholtz free energy. In J. D. Cowan, G. Tesauro, & J. Alspector (eds.), Advances in 
Neural Information Processing Systems 6. San Mateo, CA: Morgan Kaufmann, 3-10. 

Neal, R. M., and Hinton, G. E. (1994). A new view of the EM algorithm that justifies 
incremental and other variants. 

Rose, K., Gurewitz, F., and Fox, G. (1990). Statistical mechanics and phase transitions 
in clustering. Physical Review Letters 65, 945-948. 

Saund, E. (1995). A mUltiple cause mixture model for unsupervised learning. Neural 
Computation 7,51-71. 

Tenenbaum, J . (1994) . Functional parts. In A. Ram & K. Eiselt (eds.), Proceedings of 
the Sixteenth Annual Conference of the Cognitive Science Society. Hillsdale, N J: Lawrence 
Erlbaum, 864-869. 


