
Recurrent Networks:
Second Order Properties and Pruning

Morten With Pedersen and Lars Kai Hansen
CONNECT, Electronics Institute

Technical University of Denmark B349
DK-2800 Lyngby, DENMARK

emails:with.lkhansen@ei.dtu.dk

Abstract

Second order properties of cost functions for recurrent networks
are investigated. We analyze a layered fully recurrent architecture,
the virtue of this architecture is that it features the conventional
feedforward architecture as a special case. A detailed description of
recursive computation of the full Hessian of the network cost func­
tion is provided. We discuss the possibility of invoking simplifying
approximations of the Hessian and show how weight decays iron the
cost function and thereby greatly assist training. We present tenta­
tive pruning results, using Hassibi et al.'s Optimal Brain Surgeon,
demonstrating that recurrent networks can construct an efficient
internal memory.

1 LEARNING IN RECURRENT NETWORKS

Time series processing is an important application area for neural networks and
numerous architectures have been suggested, see e.g. (Weigend and Gershenfeld, 94).
The most general structure is a fully recurrent network and it may be adapted using
Real Time Recurrent Learning (RTRL) suggested by (Williams and Zipser, 89). By
invoking a recurrent network, the length of the network memory can be adapted to
the given time series, while it is fixed for the conventional lag-space net (Weigend
et al., 90). In forecasting, however, feedforward architectures remain the most
popular structures; only few applications are reported based on the Williams&Zipser
approach. The main difficulties experienced using RTRL are slow convergence and

674 Morten With Pedersen, Lars Kai Hansen

lack of generalization. Analogous problems in feedforward nets are solved using
second order methods for training and pruning (LeCun et al., 90; Hassibi et al.,
92; Svarer et al., 93). Also, regularization by weight decay significantly improves
training and generalization. In this work we initiate the investigation of second order
properties for RTRL; a detailed calculation scheme for the cost function Hessian is
presented, the importance of weight decay is demonstrated, and preliminary pruning
results using Hassibi et al.'s Optimal Brain Surgeon (OBS) are presented. We find
that the recurrent network discards the available lag space and constructs its own
efficient internal memory.

1.1 REAL TIME RECURRENT LEARNING

The fully connected feedback nets studied by Williams&Zipser operate like a state
machine, computing the outputs from the internal units according to a state vector
z(t) containing previous external inputs and internal unit outputs. Let x(t) denote
a vector containing the external inputs to the net at time t, and let y(t) denote a
vector containing the outputs of the units in the net. We now arrange the indices
on x and y so that the elements of z(t) can be defined as

, k E I
, k E U

where I denotes the set of indices for which Zk is an input, and U denotes the set of
indices for which Zk is the output of a unit in the net. Thresholds are implemented
using an input permanently clamped to unity. The k'th unit in the net is now
updated according to

where Wkj denotes the weight to unit k from input/unit j and "'0 is the activation
function of the k'th unit.

When used for time series prediction, the input vector (excluding threshold) is
usually defined as x(t) = [x(t), . .. , x(t - L + 1)] where L denotes the dimension of
the lag space. One of the units in the net is designated to be the output unit Yo, and
its activating function 10 is often chosen to be linear in order to allow for arbitrary
dynamical range. The prediction of x(t + 1) is x(t + 1) = lo[so(t»). Also, if the first
prediction is at t = 1, the first example is presented at t = 0 and we 'set y(O) = O.
We analyse here a modification of the standard Williams&Zipser construction that
is appropriate for forecasting purposes. The studied architecture is layered. Firstly,
we remove the external inputs from the linear output unit in order to prevent the
network from getting trapped in a linear mode. The output then reads

x(t + 1) = Yo(t + 1) = L WojYj(t) + Wthres,o (1)
jeU

Since y(O) = 0 we obtain a first prediction yielding x(l) = Wthres,o which is likely
to be a poor prediction, and thereby introducing a significant error that is fed
back into the network and used in future predictions. Secondly, when pruning

Recurrent Networks: Second Order Properties and Pruning 675

a fully recurrent feedback net we would like the net to be able to reduce to a
simple two-layer feedforward net if necessary. Note that this is not possible with
the conventional Williams&Zipser update rule, since it doesn't include a layered
feedforward net as a special case. In a layered feedforward net the output unit is
disconnected from the external inputs; in this case, cf. (1) we see that x(t + 1) is
based on the internal 'hidden' unit outputs Yk(t) which are calculated on the basis
of z(t - 1) and thereby x(t -1). Hence, besides the startup problems, we also get
a two-step ahead predictor using the standard architecture.

In order to avoid the problems with the conventional Williams&Zipser update
scheme we use a layered updating scheme inspired by traditional feedforward nets,
in which we distinguish between hidden layer units and the output unit. At time t,
the hidden units work from the input vector zh(t)

, k E I
, kE U
, k=O

where I denotes the input indices, U denotes the hidden layer units and 0 the
output unit. Further, we use superscripts hand 0 to distinguish between hidden
unit and output units. The activation of the hidden units is calculated according
to

y~(t) = fr[s~(t)] = fr [L Wki zJ (t)] , k E U
ie1uUuO

(2)

The hidden unit outputs are forwarded to the output unit, which then sees the
input vector zkCt)

OCt) _ { y~(t)
Zk - yO(t-1)

and is updated according to

, k E U
k=O

(3)

The cost function is defined as C = E + wTRw. R is a regularization matrix, w is
the concatenated set of parameters, and the sum of squared errors is

1 T

E = 2 L[e(t)F , e(t) = x(t) - yO(t),
t=l

(4)

where T is the size of the training set series. RTRL is based on gradient descent in
the cost function, here we investigate accelerated training using Newton methods.
For that we need to compute first and second derivatives of the cost function. The
essential difficulty is to determine derivatives of the sum of squared errors:

aE = _ {-.. e(t) ayO(t)
aw· · L...J aw ..

'3 t=l '3

(5)

676 Morten With Pedersen, Lars Kai Hansen

The derivative of the output unit is computed as
8yO(t) 8r[sO(t)] 8s0(t) --- ._-
8Wij 8so(t) 8Wij

(6)

where
8s0(t) _ 1: . O(t) "" . 8yjl(t) 8yO(t - 1)
-8-- - UO,Zj + L- WOJI 8 + woo 8

Wij j/EU Wij Wij
(7)

where 6j k is the Kronecker delta. This expression contains the derivative of the
hidden units

(8)

where

(9)

...
132

...
132

<> <>

~!:'::.3-.a~.2:;:-5 ---:'.a.'::-2 ---:.a7..15'--.a-:':.1'--.a7..0:;:-5-~-::0~.05~-::-0.1;---::'!0.1·5 ~.3 .a.25 .a.2 .a.15 .a.1 .a.OS 0.05 0.1 0.15
WEIGHT VAlUE WEIGHT VALUE

Figure 1: Cost function dependence of a weight connecting two hidden units for
the sunspot benchmark series. Left panel: Cost function with small weight decay,
the (local) optimum chosen is marked by an asterix. Right panel: The same slice
through the cost function but here retrained with higher weight decay.

The complexity of the training problem for the recurrent net using RTRL is demon­
strated in figure 1. The important role of weight decay (we have used a simple weight
decay R = at) in controlling the complexity of the cost function is evident in the
right panel of figure 1. The example studied is the sunspot benchmark problem
(see e.g. (Weigend et al., 90) for a definition). First, we trained a network with
the small weight decay and recorded the left panel result. Secondly, the network
was retrained with increased weight decay and the particular weight connecting
two hidden units was varied to produce the right panel result. In both cases all
other weights remained fixed at their optimal values for the given weight decay. In
addition to the complexity visible in these one-parameter slices of the cost func­
tion, the cost function is highly anisotropic in weight space and consequently the
network Hessian is ill-conditioned. Hence, gradient descent is hampered by slow
con vergen ce.

Recurrent Networks; Second Order Properties and Pruning

2 SECOND ORDER PROPERTIES OF THE COST
FUNCTION

677

To improve training by use of Newton methods and for use in OBS-pruning we
compute the second derivative of the error functional:

82 E = _ t [e(t) 82yO(t) _ 8yO(t) . 8yO (t)]
8Wij8wpq t=l 8Wij8wpq 8Wij 8wpq

(10)

The second derivative of the output is

82yO(t) _ 82 r[sO(t)] 8s0(t) 8s0(t) 8r[sO(t)] 82 SO(t) --....:.....:.- - . -- . --+ . ----:...;....;..-
8wij 8wpq 8so(t)2 8Wij 8wpq 8so(t) 8Wij8wpq

(11)

with

82so(t) _, 8zJ(t) ~ 82yj,(t) 82yO(t - 1) 8z~(t)
8 8 - Ooi-O-- + ~ Woj' + woo + Dop--

Wij Wpq Wpq j'EU 8wij8wpq 8wij 8wpq 8Wij
(12)

This expression contains the second derivative of the hidden unit outputs

82yi(t) _ 82 fr[si(t)] . 8si(t) . 8si(t) + 8fr[si(t)]. 02si(t) (13)
OWijOWpq - osi(t)2 OWij OWpq osi(t) OWijOWpq

with

02si(t) _ ozj(t) ~ 02yj,(t - 1) 02 yO(t - 1) oz~(t) (14)
- Dki -0-- + L..J Wkj I + Wko + Dkp 0

8WijOWpq Wpq j'EU OWijOWpq OWijOWpq Wij

Recursion in the five index quantity (14) imposes a significant computational bur­
den; in fact the first term of the Hessian in (10), involving the second derivative, is
often neglected for computational convenience (LeCun et al., 90). Here we start by
analyzing the significance of this term during training. We train a layered architec­
ture to predict the sunspot benchmark problem. In figure 2 the ratio between the
largest eigenvalue of the second derivative term in (10) and the largest eigenvalue
of the full Hessian is shown. The ratio is presented for two different magnitudes of
weight decay. In line with our observations above the second order properties of the
"ironed" cost function are manageable, and we can simplify the Hessian calcula­
tion by neglecting the second derivative term in (10), i.e., apply the Gauss-Newton
approximation.

3 PRUNING BY THE OPTIMAL BRAIN SURGEON

Pruning of recurrent networks has been pursued by (Giles and Omlin, 94) using
a heuristic pruning technique, and significant improvement in generalization for a
sequence recognition problem was demonstrated. Two pruning schemes are based
on systematic estimation of weight saliency: the Optimal Brain Damage (OBD)
scheme of (LeCun et al., 90) and OBS by (Hassibi et al., 93). OBD is based
on the diagonal approximation of the Hessian and is very robust for forecasting
(Svarer et al., 93). If an estimate of the full Hessian is available OBS can be used

678 Morten With Pedersen, Lars Kai Hansen

10'

.. :.::.: :::::;:;::: ... :::: .
. '"

10 ... '----!-10--f::20--:30~----! .. :---~50--.. ~---:::70:----=1O 1040''-----:'10--f::20--:30~----! .. :---~50,----.. ~---:70~---:!IO
ITERATION. ITERATION.

Figure 2: Ratio between the largest magnitude eigenvalue of the second derivative
term of the Hessian (c.f. equation (10)) and the largest magnitude .eigenvalue of
the complete Hessian as they appeared during ten training sessions. The connected
circles represent the average ratio. Left panel: Training with small weight decay.
Right panel: Training with a high weight decay.

for estimation of saliencies incorporating linear retraining. In (Hansen and With
Pedersen, 94) OBS was generalized to incorporate weight decays; we use these
modifications in our experiments. Note that OBS in its standard form only allows
for one weight to be eliminated at a time. The result of a pruning session is a
nested family of networks. In order to select the optimal network within the family
it was suggested in (Svarer et al., 93.) to use the estimated test error. In particular
we use Akaike's Final Prediction Error (Akaike, 69) to estimate the network test
error Etest = «(T + N)/(T - N» . 2E/T 1, and N is the number of parameters
in the network. In figure 3 we show the results of such a pruning session on the
sunspot data starting from a (4-4-1) network architecture. The recurrent network
was trained using a damped Gauss-Newton scheme. Note that the training error
increases as weights are eliminated, while the test error and the estimated test error
both pass through shallow minima showing that generalization is slightly improved
by pruning. In fact, by retraining the optimal architecture with reduced weight
decay both training and test errors are decreased in line with the observations in
(Svarer et al., 93). It is interesting to observe that the network, though starting
with access to a lag-space of four delay units, has lost three of the delayed inputs;
hence, rely solely on its internal memory, as seen in the right panel of. figure 3. To
further illustrate the memory properties of the optimal network, we show in figure
4 the network response to a unit impulse. It is interesting that the response of the
network extends for approximately 12 time steps corresponding to the "period" of
the sunspot series.

lThe use of Akaike's estimate is not well justified for a feedback net, test error estimates
for feedback models is a topic of current research.

Recurrent Networks: Second Order Properties and Pruning

0.25 .

~0.'5
w

0.1 ,' : .. "': - .- - ~:.. __ ~ . .; ~ _~_ . __ ~ ~~ .-: :7

0.05

~~-='0--~'5~~~~~~~~~--~$~-~~~"~~
NUMSER OF PARAMETERS

679

OUTPUT

X(I-I) X(I-2) X(I-3) X(I-4)

Figure 3: Left panel: OBS pruning of a (4-4-1) recurrent network trained on sunspot
benchmark. Development of training error, test error, and Akaike estimated test
error (FPE). Right panel: Architecture of the FPE-optimal network. Note that the
network discards the available lag space and solely predicts from internal memory.

0.8
0.1

0.5 ! .. 0.8

0.4 .-.. ,

0.3 ..
w .,
~ 0.2 ...

II!
0.'

V"-
I
. \ .,: " :

I \ :
.0.4 t orf"

I ,
. .\./ I : \

.0.8 .' ,
.0.' , I , , , ,---

.0.1 ...
.0.20

'0 15 ~ '0 '5 ~

TIME TIME

Figure 4: Left panel: Output of the pruned network after a unit impulse input at
t = O. The internal memory is about 12 time units long which is, in fact, roughly
the period of the sunspot series. Right panel: Activity of the four hidden units in
the pruned network after a unit impUlse at time t = O.

4 CONCLUSION

A layered recurrent architecture, which has a feedforward net as a special case, has
been investigated. A scheme for recursive estimation of the Hessian of the fully
recurrent neural net is devised . It's been shown that weight decay plays a decisive
role when adapting recurrent networks. Further, it is shown that the' second order
information may be used to train and prune a recurrent network and in this process
the network may discard the available lag space. The network builds an efficient

680 Morten With Pedersen, Lars Kai Hansen

internal memory extending beyond the lag space that was originally available.

Acknowledgments

We thank J an Larsen, Sara Solla, and Claus Svarer for useful discuss~ons, and Lee
Giles for providing us with a preprint of (Giles and amlin, 94). We thank the
anonymous reviewers for valuable comments on the manuscript. This research is
supported by the Danish Natural Science and Technical Research Councils through
the Computational Neural Network Center (CONNECT).

References

H. Akaike: Fitting Autoregressive M ode/s for Prediction. Ann. Inst. Stat. Mat.
21, 243-247, (1969).

Y. Le Cun, J.S. Denker, and S.A. Solla: Optimal Brain Damage. In Advances
in Neural Information Processing Systems 2, (Ed. D.S. Touretzsky) Morgan Kauf­
mann, 598-605, (1990).

C.L. Giles and C.W. amlin: Pruning of Recurrent Neural Networks for Improved
Generalization Performance. IEEE Transactions on Neural Networks, to appear.
Preprint NEC Research Institute (1994).

L.K. Hansen and M. With Pedersen: Controlled Growth of Cascade Correlation
Nets, International Conference on Artificial Neural Networks ICANN'94 Sorrento.
(Eds. M. Marinaro and P.G. Morasso) Springer, 797-801, (1994).

B. Hassibi, D. G. Stork, and G. J. Wolff, Optimal Brain Surgeon and General
Network Pruning, in Proceedings of the 1993 IEEE International Conference on
Neural Networks, San Francisco (Eds. E.H. Ruspini et al.) IEEE, 293-299 (1993).

C. Svarer, L.K. Hansen, and J. Larsen: On Design and Evaluation of . Tapped Delay
Line Networks, In Proceedings ofthe 1993 IEEE International Conference on Neural
Networks, San Francisco, (Eds. E.H. Ruspini et al.) 46-51, (1993).

A.S . Weigend, B.A. Huberman, and D.E. Rumelhart: Predicting the future: A
Connectionist Approach. Int. J. of Neural Systems 3, 193-209 (1990).

A.S. Weigend and N.A. Gershenfeld, Eds.: Times Series Prediction: Forecasting the
Future and Understanding the Past. Redwood City, CA: Addison-Wesley (1994).

R.J. Williams and D. Zipser: A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks, Neural Computation 1, 270-280, (1989).

