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Abstract 

This paper presents instance-based state identification, an approach 
to reinforcement learning and hidden state that builds disambiguat­
ing amounts of short-term memory on-line, and also learns with an 
order of magnitude fewer training steps than several previous ap­
proaches. Inspired by a key similarity between learning with hidden 
state and learning in continuous geometrical spaces, this approach 
uses instance-based (or "memory-based") learning, a method that 
has worked well in continuous spaces. 

1 BACKGROUND AND RELATED WORK 

When a robot's next course of action depends on information that is hidden from 
the sensors because of problems such as occlusion, restricted range, bounded field 
of view and limited attention, the robot suffers from hidden state. More formally, 
we say a reinforcement learning agent suffers from the hidden state problem if the 
agent's state representation is non-Markovian with respect to actions and utility. 

The hidden state problem arises as a case of perceptual aliasing: the mapping be­
tween states of the world and sensations of the agent is not one-to-one [Whitehead, 
1992]. If the agent's perceptual system produces the same outputs for two world 
states in which different actions are required, and if the agent's state representation 
consists only of its percepts, then the agent will fail to choose correct actions. Note 
that even if an agent's state representation includes some internal state beyond its 
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immediate percepts, the agent can still suffer from hidden state if it does not keep 
enough internal state to uncover the non-Markovian-ness of its environment. 

One solution to the hidden state problem is simply to avoid passing through the 
aliased states. This is the approach taken in Whitehead's Lion algorithm [White­
head, 1992]. Whenever the agent finds a state that delivers inconsistent reward, it 
sets that state's utility so low that the policy will never visit it again. The success 
of this algorithm depends on a deterministic world and on the existence of a path 
to the goal that consists of only unaliased states. 

Other solutions do not avoid aliased states, but do as best they can given a non­
Markovian state representation [Littman, 1994; Singh et al., 1994; Jaakkola et al., 
1995]. They involve either learning deterministic policies that execute incorrect 
actions in some aliased states, or learning stochastic policies with action choice 
probabilities matching the proportions of the different underlying aliased world 
states. These approaches do not depend on a path of unaliased states, but they 
have other limitations: when faced with many aliased states, a stochastic policy 
degenerates into random walk; when faced with potentially harmful results from 
incorrect actions, deterministically incorrect or probabilistically incorrect action 
choice may prove too dangerous; and when faced with performance-critical tasks, 
inefficiency that is proportional to the amount of aliasing may be unacceptable. 

The most robust solution to the hidden state problem is to augment the agent's 
state representation on-line so as to disambiguate the aliased states. State identi­
fication techniques uncover the hidden state information-that is, they make the 
agent's internal state space Markovian. This transformation from an imperfect state 
information model to a perfect state information model has been formalized in the 
decision and control literature, and involves adding previous percepts and actions to 
the definition of agent internal state [Bertsekas and Shreve, 1978]. By augmenting 
the agent's perception with history information-.short-term memory of past per­
cepts, actions and rewards-the agent can distinguish perceptually aliased states, 
and can then reliably choose correct actions from them. 

Predefined, fixed memory representations such as order n Markov models (also 
known as constant-sized perception windows, linear traces or tapped-delay lines) 
are often undesirable. When the length of the window is more than needed, they 
exponentially increase the number of internal states for which a policy must be 
stored and learned; when the length of the memory is less than needed, the agent 
reverts to the disadvantages of undistinguished hidden state. Even if the agent de­
signer understands the task well enough to know its maximal memory requirements, 
the agent is at a disadvantage with constant-sized windows because, for most tasks, 
different amounts of memory are needed at different steps of the task. 

The on-line memory creation approach has been adopted in several reinforcement 
learning algorithms. The Perceptual Distinctions Approach [Chrisman, 1992] and 
Utile Distinction Memory [McCallum, 1993] are both based on splitting states of a 
finite state machine by doing off-line analysis of statistics gathered over many steps. 
Recurrent-Q [Lin, 1993] is based on training recurrent neural networks. Indexed 
Memory [Teller, 1994] uses genetic programming to evolve agents that use load and 
store instructions on a register bank. A chief disadvantage of all these techniques 
is that they require a very large number of steps for training. 
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2 INSTANCE-BASED STATE IDENTIFICATION 

This paper advocates an alternate solution to the hidden state problem we term 
instance-based state identification. The approach was inspired by the successes of 
instance-based (also called "memory-based") methods for learning in continuous 
perception spaces, (i.e. [Atkeson, 1992; Moore, 1992]). 

The application of instance-based learning to short-term memory for hidden state is 
driven by the important insight that learning in continuous spaces and learning with 
hidden state have a crucial feature in common: they both begin learning without 
knowing the final granularity of the agent's state space. The former learns which 
regions of continuous input space can be represented uniformly and which areas 
must be finely divided among many states. The later learns which percepts can 
be represented uniformly because they uniquely identify a course of action with­
out the need for memory, and which percepts must be divided among many states 
each with their own detailed history to distinguish them from other perceptually 
aliased world states. The first approach works with a continuous geometrical input 
space, the second works with a percept-act ion-reward "sequence" space, (or "his­
tory" space). Large continuous regions correspond to less-specified, small memories; 
small continuous regions correspond to more-specified, large memories. 

Furthermore, learning in continuous spaces and sequence spaces both have a lot to 
gain from instance-based methods. In situations where the state space granularity 
is unknown, it is especially useful to memorize the raw previous experiences. If 
the agent tries to fit experience to its current, flawed state space granularity, it is 
bound to lose information by attributing experience to the wrong states. Experi­
ence attributed to the wrong state turns to garbage and is wasted. When faced 
with an evolving state space, keeping raw previous experience is the path of least 
commitment, and thus the most cautious about losing information. 

3 NEAREST SEQUENCE MEMORY 

There are many possible instance-based techniques to choose from, but we wanted 
to keep the first application simple. With that in mind, this initial algorithm is 
based on k-nearest neighbor. We call it Nearest Sequence Memory, (NSM). It bears 
emphasizing that this algorithm is the most straightforward, simple, almost naive 
combination of instance-based methods and history sequences that one could think 
of; there are still more sophisticated instance-based methods to try. The surprising 
result is that such a simple technique works as well as it does. 

Any application of k-nearest neighbor consists of three parts: 1) recording each 
experience, 2) using some distance metric to find neighbors of the current query 
point, and 3) extracting output values from those neighbors. We apply these three 
parts to action-percept-reward sequences and reinforcement learning by Q-Iearning 
lWatkins, 1989] as follows: 

1. For each step the agent makes in the world, it records the action, percept 
and reward by adding a new state to a single, long chain of states. Thus, 
each state in the chain contains a snapshot of immediate experience; and 
all the experiences are laid out in a time-connected history chain. 
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Figure 1: A continuous space compared with a sequence space. In each case, the 
"query point" is indicated with a gray cross, and the three nearest neighbors are 
indicated with gray shadows. In a geometric space, the neighborhood metric is 
defined by Euclidean distance. In a sequence space, the neighborhood metric is 
determined by sequence match length-the number of preceding states that match 
the states preceding the query point. 

2. When the agent is about to choose an action, it finds states considered to 
be similar by looking in its state chain for states with histories similar to 
the current situation. The longer a state's string of previous experiences 
matches the agent's most recent experiences, the more likely the state rep­
resents where the agent is now. 

3. Using the states, the agent obtains Q-values by averaging together the 
expected future reward values associated with the k nearest states for each 
action. The agent then chooses the action with the highest Q-value. The 
regular Q-Iearning update rule is used to update the k states that voted for 
the chosen action. 

Choosing to represent short-term memory as a linear trace is a simple, well­
established technique. Nearest Sequence Memory uses a linear trace to represent 
memory, but it differs from the fixed-sized window approaches because it provides 
a variable memory-length-like k-nearest neighbor, NSM can represent varying res­
olution in different regions of state space. 

4 DETAILS OF THE ALGORITHM 

A more complete description of Nearest Sequence Memory, its performance and its 
possible improvements can be found in [McCallum, 1995]. 

The interaction between the agent and its environment is described by actions, 
percepts and rewards. There is a finite set of possible actions, A = {al,a2, ... ,am }, 
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a finite set of possible percepts, () = {Ol, 02, ... , On}, and scalar range of possible 
rewards, n = [x, y], x, Y E~. At each time step, t, the agent executes an action, 
at E A, then as a result receives a new percept, Ot E (), and a reward, rt E n. The 
agent records its raw experience at time t in a "state" data point, St. Also associated 
with St is a slot to hold a single expected future discounted reward value, denoted 
q(st). This value is associated with at and no other action. 

1. Find the k nearest neighbor (most similar) states for each possible future action. 
The state currently at the end of the chain is the "query point" from which we 
measure all the distances. The neighborhood metric is defined by the number 
of preceding experience records that match the experience records preceding the 
"query point" state. (Here higher values of n(s;, sJ) indicate that S; and Sj are 
closer neighbors.) 

( _ _ )_ { 1+n(s;_1,Sj-I), 
n S" SJ - 0 , 

if (a;-1 = aj-I) A (0;-1 = OJ-I) A (r;-1 = rj_I) 
otherwise 

(1) 
Considering each of the possible future actions ill turn, we find the k nearest 
neighbors and give them a vote, v(s;). 

v(S;) = { ~: if n(st, s;) is among the k maxv$jlaj=a; n(st, Sj)'s 
otherwise (2) 

2. Determine the Q-value for each action by averaging individual the q-values from 
the k voting states for that action. 

Qt(a;) = L (v(s;)/k)q(sj) (3) 
V$jlaj=a; 

3. Select an action by maximum Q-value, or by random exploration. According to 
an exploration probability, e, either let at+1 be randomly chosen from A, or 

(4) 

4. Execute the action chosen in step 3, and record the resulting experience. Do this 
by creating a new "state" representing the current state of the environment, and 
storing the action-percept-reward triple associated with it: 
Increment the time counter: t ~ t + 1. Create St; record in it at, Ot, rt. 
The agent can limit its storage and computational load by limiting the number 
of instances it maintains to N (where N is some reasonably large number) . Once 
the agent accumulates N instances, it can discard the oldest instance each time 
it adds a new one. This also provides a way to handle a changing environment. 

5. Update the q-values by vote. Perform the dynamic programming step using the 
standard Q-Iearning rule to update those states that voted for the chosen action. 
Note that this actually involves performing steps 1 and 2 to get the next Q-values 
needed for calculating the utility of the agent's current state, Ut . (Here (3 is the 
learning rate.) 

Ut = max Qt(a) (5) 
a 

(Vsda; = at-I) q(s;) ~ (1- (3v(s;))q(s;) + (3v(s;)(r; + "YUt) (6) 
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Figure 2: Comparing Nearest Sequence Memory with three other algorithms: Per­
ceptual Distinction Approach, Recurrent-Q and Utile Distinction Memory. In each 
case, NSM learns with roughly an order of magnitude fewer steps. 

5 EXPERIMENTAL RESULTS 

The performance of NSM is compared to three other algorithms using the tasks 
chosen by the other algorithms' designers. In each case, NSM learns the task with 
roughly an order of magnitude fewer steps. Although NSM learns good policies 
quickly, it does not always learn optimal policies. In section 6 we will discuss why 
the policies are not always optimal and how NSM could be improved. 

The Perceptual Distinctions Approach [Chrisman, 1992] was demonstrated in a 
space ship docking application with hidden state. The task was made difficult by 
noisy sensors and actions. Some of the sensors returned incorrect values 30% of 
the time. Various actions failed 70, 30 or 20% of the time, and when they failed, 
resulted in random states. NSM used f3 = 0.2, I = 0.9, k = 8, and N = 1000. PDA 
takes almost 8000 steps to learn the task. NSM learns a good policy in less than 
1000 steps, although the policy is not quite optimal. 

Utile Distinction Memory [McCallum, 1993] was demonstrated on several local per­
ception mazes. Unlike most reinforcement learning maze domains, the agent per­
ceives only four bits indicating whether there is a barrier to the immediately adjacent 
north, east, south and west. NSM used f3 = 0.9, I = 0.9, k = 4, and N = 1000. In 
two of the mazes, NSM learns the task in only about 1/20th the time required by 
UDM; in the other two, NSM learns mazes that UDM did not solve at all . 
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Recurrent-Q [Lin, 1993] was demonstrated on a robot 2-cup retrieval task. The 
env,jronment is deterministic, but the task is made difficult by two nested levels of 
hidden state and by providing no reward until the task is completely finished. NSM 
used {3 = 0.9, I = 0.9, k = 4, and N = 1000. NSM learns good performance in 
about 15 trials , Recurrent-Q takes about 100 trials to reach equivalent performance. 

6 DISCUSSION 

Nearest Sequence Memory offers much improved on-line performance and fewer 
training steps than its predecessors. Why is the improvement so dramatic? I 
believe the chief reason lies with the inherent advantage of instance-based methods, 
as described in section 2: the key idea behind Instance-Based State Identification 
is the recognition that recording raw experience is particularly advantageous when 
the agent is learning a policy over a changing state space granularity, as is the case 
when the agent is building short-term memory for disambiguating hidden state. 

If, instead of using an instance-based technique, the agent simply averages new ex­
periences into its current, flawed state space model, the experiences will be applied 
to the wrong states, and cannot be reused when the agent reconfigures its state 
space. Furthermore, and perhaps even more detrimentally, incoming data is always 
interpreted in the context of the flawed state space, always biased in an inappropri­
ate way-not simply recorded, kept uncommitted and open to easy reinterpretation 
in light of future data. 

The experimental results in this paper bode well for instance-based state identifi­
cation. Nearest Sequence Memory is simple-if such a simplistic implementation 
works as well as it does, more sophisticated approaches may work even better. Here 
are some ideas for improvement: 

The agent should use a more sophisticated neighborhood distance metric than exact 
string match length. A new metric could account for distances between different 
percepts instead of considering only exact matches. A new metric could also handle 
continuous-valued inputs. 

Nearest Sequence Memory demonstrably solves tasks that involve noisy sensation 
and action, but it could perhaps handle noise even better if it used some technique 
for explicitly separating noise from structure. K-nearest neighbor does not explicitly 
discriminate between structure and noise. If the current query point has neighbors 
with wildly varying output values, there is no way to know if the variations are due 
to noise , (in which case they should all be averaged), or due to fine-grained structure 
of. the underlying function (in which case only the few closest should be averaged). 
Because NSM is built on k-nearest neighbor, it suffers from the same inability to 
methodically separate history differences that are significant for predicting reward 
and history differences that are not. I believe this is the single most important 
reason that NSM sometimes did not find optimal policies. 

Work in progress addresses the structure/noise issue by combining instance-based 
state identification with the structure/noise separation method from Utile Dis­
tinction Memory [McCallum, 1993]. The algorithm, called Utile Suffix Memory, 
uses a tree-structured representation, and is related to work with Ron, Singer and 
Tishby's Prediction Suffix Trees, Moore's Parti-game, Chapman and Kaelbling 's 
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G-algorithm, and Moore's Variable Resolution Dynamic Programming. See [Mc­
Callum, 1994] for more details as well as references to this related work. 
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