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Abstract 

This paper presents a new method for image compression by neural 
networks. First, we show that we can use neural networks in a py­
ramidal framework, yielding the so-called PCA pyramids. Then we 
present an image compression method based on the PCA pyramid, 
which is similar to the Laplace pyramid and wavelet transform. 
Some experimental results with real images are reported. Finally, 
we present a method to combine the quantization step with the 
learning of the PCA pyramid. 

1 Introduction 

In the past few years, a lot of work has been done on using neural networks for 
image compression, d . e.g. (Cottrell et al., 1987; Sanger, 1989; Mougeot et al., 1991; 
Schweizer et al., 1991)). Typically, networks which perform a Principal Component 
Analysis (PCA) were employed; for a recent overview of PCA networks, see (Baldi 
and Hornik, 1995). 

A well studied and thoroughly understood PCA network architecture is the linear 
autoassociative network, see (Baldi and Hornik, 1989; Bourlard and Kamp, 1988). 
This network consists of N input and output units and M < N hidden units, and is 
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trained (usually by back-propagation) to reproduce the input at the output units. 
All units are linear. Bourlard & Kamp (Bourlard and Kamp, 1988) have shown that 
at the minimum of the usual quadratic error function £, the hidden units project 
the input on the space spanned by the first M principal components of the input 
distribution. In fact, as long as the output units are linear, nothing is gained by 
using non-linear hidden units. On average, all hidden units have equal variance. 

However, peA is not the only method for image compression. Among many others, 
the Laplace Pyramid (Burt and Adelson, 1983) and wavelets (Mallat, 1989) have 
successfully been used to compress images. Of particular interest is the fact that 
these techniques provide a hierarchical representation of the image which can be 
used for progressive image transmission. However, these hierarchical methods are 
not adaptive. 

In this paper, we present a combination of autoassociative networks with hierar­
chical methods. We propose the so-called peA pyramids, which can be seen as 
an extension of image pyramids with a learning algorithm as well as cascaded lo­
cally connected autoassociative networks. In other words, we combine the structure 
of image pyramids and neural network learning algorithms, resulting in learning 
pyramids. 

The structure of this paper is as follows . We first present image pyramids and, in 
particular, the peA pyramid. Then, we discuss how these pyramids can be used 
for image compression, and present some experimental results. Next, we discuss a 
method to combine the quantization step of compression with the transformation. 
Finally, we give some conclusions and an outline of further research. 

2 The peA Pyramid 

Before we introduce the peA pyramid, let us describe regular image pyramids. 
For a discussion of irregular pyramids and their relation to neural networks, see 
(Bischof, 1993). In the simplest case, each successive level ofthe pyramid is obtained 
from the previous level by a filtering operation followed by a sampling operator. 
More general functions can be used to achieve the desired reduction. We therefore 
call them reduction functions. The structure of a pyramid is determined by the 
neighbor relations within the levels of the pyramid and by the "father-son" relations 
between adjacent levels. A cell (if it is not at the base level) has a set of children 
(sons) at the level directly below which provide input to the cell, a set of neighbors 
(brothers/sisters) at the same level, and (if it is not the apex of the pyramid) a 
set of parents (fathers) at the level directly above. We denote the structure of a 
(regular) pyramid by the expression n x nlr, where n x n (the number of sons) is 
the size of the reduction window and r the reduction factor which describes how 
the number of cells decreases from level to level. 

2.1 peA Pyramids 

Since a pyramid reduces the information content of an image level by level, an 
objective for the reduction function would be to preserve as much information as 
possible, given the restrictions imposed by the structure of the pyramid, or equiva­
lently, to minimize the information loss by the reduction function. This naturally 
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leads to the idea of representing the pyramid by a suitable peA network. Among 
the many alternatives for such networks, we have chosen the autoassociative net­
works for two reasons. First, the analysis of Hornik & Kuan (Hornik and Kuan, 
1992) shows that these networks are more stable than competing models. Second, 
autoassociative networks have the nice feature that they automatically provide us 
with the expansion function (weights from the hidden layer to output layer). 

Since the neural network should have the same connectivity as the pyramid (i.e., 
the same father-son relations), its topology is determined by the structure of the 
pyramid. In this paper, we confine ourselves to the 4 x 4/4 pyramid for two reasons. 
First, the 4 x 4/4 pyramid has the nice property that every cell has the same number 
of fathers, which results in homogeneous networks. Second, as experiments have 
shown (Bischof, 1993) the results achieved with this pyramid are similar to other 
structures, e.g. the 5 x 5/4 pyramid, using fewer weights. 

E 
R 

Ii. = E(I n+l ) = E(R(ln» 

(a) General Setting 

L-..J 
r n 

(b) 4/2 pyramid (c) Correspon-
ding network 

Figure 1: From the structure of the pyramid to the topology of the network 

Figure 1 depicts the one-dimensional situation of a 4/2 pyramid (this is the one­
dimensional counterpart of the two-dimensional 4 x 4/2 pyramid). Figure 1a shows 
the general goal to be achieved and the notations employed; Figure 1 b shows a 4/2 
pyramid. When constructing the corresponding network, we start at the output 
layer (Le., I~). For an n/r pyramid we typically choose the size of the output layer 
as n. Next, we have to include all fathers of the cells in the output layer as hidden 
units. Finally, we have to include all sons of the hidden layer cells in the input 
layer. For the 4/2 pyramid, this results in an 8-3-4 network as shown in Figure 1c. 
A similar construction yields an 8 x 8-3 x 3-4 x 4 network for the 4 x 4/4 pyramid. 

The next thing to consider are the constraints on the network weights due to the 
overlaps in the pyramid. To completely cover the input image with output units, 
we can shift the network only by four cells in each direction. Therefore, the hidden 
units at the borders overlap. For the 4/2 pyramid, the left and right hidden units 
must have identical weights. In the case of the 4 x 4/4 pyramid, the network has 
four independent units. 

The thus constructed network can be trained by some suitable learning algorithm, 
typically of the back-propagation type, using batches of an image as input for trai-
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ning the first pyramid level. After that, the second level of the pyramid can be 
trained in the same way using the first pyramid level as training data, and so on. 

2.2 PeA-Laplace Pyramid and Image Compression 

Thus far, we have introduced a network which can learn the reduction function R 
and the expansion function E of a pyramid. Analogously to the Laplace pyramid 
and the wavelet transform we can now introduce the level Li of the PCA-Laplace 
pyramid, given by 

Li = Ii - I: = Ii - E(R(Ii)) 

It should be noted that during learning we exactly minimize the squared Laplace 

(a) First 2 levels of a Laplace pyramid 
(upper half) and peA-Laplace pyramid 
(lower half) (grey = 0) 

(9) Reconstruction error of house 
image with quantization of 3 bits, 4 
bits, 7 bits, and reconstructed image 

Figure 2: Results of PCA-Laplace-Pyramid 

level. The original image 10 can be completely recovered from level In and the 
Laplace levels Lo, ... ,Ln - 1 by 

10 = E(··· E(E(In) + L n- 1 ) + Ln- 2 )···) + Lo· 

Since the level In is rather small (e.g., 32 x 32 pixels) and the levels of the PCA­
Laplace pyramid are typically sparse (i.e., many pixels are zero, see Figure 2a) and 
can therefore be compressed considerably by a conventional compression algorithm 
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(e.g. Lempel-Ziv (Ziv and Lempel, 1977)), this image representation results in a 
lossless image compression algorithm. 

In order to achieve higher compression ratios we can quantize the levels of the PCA­
Laplace pyramid. In this case, the compression is lossy, because the original image 
cannot be recovered exactly. The compression ratio and the amount of loss can be 
controlled by the number of bits used to quantize the levels of the PCA-Laplacian. 

To measure the difference between the compressed and the original image, we use 
the normalized mean squared error (NMSE) as in (Cottrell et al., 1987; Sanger, 
1989) . The NMSE is given by the mean squared error divided by the average 
squared intensity of the image, i.e., 

NMSE = MSE = ((10 - C(10))2) 
(I~) (I~)' 

where 10 and C(lo) are the original and the compressed image, respectively. The 
compression ratio is measured by the amount of bits used to store 10 , divided by 
the amount of bits used to store C(1o). 

2.3 Results 

For the results reported here we trained the networks by a conjugate gradient al­
gorithm for 100 steps! and used a uniform quantization which is fixed for all levels 
of the pyramid. As was shown in (Burt and Adelson, 1983; Mayer and Kropatsch, 
1989), the results could be improved by gradually increasing the quantization from 
bottom to top. 

Figure 2b shows the error images when the levels of the PCA-Laplacian pyramid are 
quantized with 3, 4, and 7 bits and the reconstructed image from the 7 bit Laplacian. 
Note that we used the same lookup-table for the error images. To compress the levels 
of the PCA-Laplacian pyramid, we employed the standard UNIX compress program 
which implements a Lempel-Ziv algorithm. 

iFrom these images one can see that the results with the 4 and 7 bit quantization 
are very good. Visually, no difference between the reconstructed and the original 
image can be perceived. Table 1 shows the compression ratios and the NMSEs on 
these images. We have performed experiments on 20 different images, the results 
on these images are comparable to the ones reported here. 

These results compare favorably with the results in the literature (see Table 1). 
We have also applied a 5 x 5/4 Laplace pyramid to the house image which gave a 
compression ratio of 3.42 with an NMSE of 0.000087 for quantization with four bits 
of the Laplace levels. We have also included results achieved with JPEG. One can 
see that our method gives considerably better results . 

We have also demonstrated experimentally what happens if we train a pyramid on 
one image and then apply this pyramid to another image without retraining. These 
experiments indicate that the errors are only a little bit larger for images not trained 
on. With five additional steps of training the errors are almost the same. iFrom 

lIn all our experiments the training algorithm converged (i.e. usually after 200 steps, 
however the improvements between steps 20 and convergence are negligible). 
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Quant. Compression ratio Bits/Pixel NMSE 
3 Bit 37.628 0.212 0.0172 
4 Bit 24.773 0.323 0.0019 
7 Bit 8.245 0.970 0.0000215 
no Quant. 3.511 2.279 0.0 
Cottrell,~Cottrell et al., 1987) 8.0 1.000 0.0059 
Sanger (Sanger, 1989) 22.0 0.360 0.043 
5 x 5/4 Laplace 3.420 2.339 0.000087 
JPEG 8.290 0.965 0.00139 
JPEG 15.774 0.507 0.00348 

Table 1: Compression ratios and NMSE for various compression methods 

this results we can conclude that we do not need to retrain the pyramid for each 
new image. 

3 Integration of Quantization 

For the results reported in the previous section we have used a fixed and uniform 
quantization scheme which can be improved by using adaptive quantizers like the 
Lloyd I algorithm, Kohonen's Feature Maps, learning vector quantization, or some­
thing similar. Such an approach as taken by Schweizer (Schweizer et al., 1991) who 
combined a Cottrell-type network with self-organizing feature maps. However, we 
can go further. 

With the PCA network we minimize the squared Laplace level which does not ne­
cessarily yield low compression errors. What we really want to minimize are the 
quantized Laplace levels. Usually, the Laplace levels have an unimodally shaped 
histogram centered at zero. However, for the result of the compression (i.e., com­
pression ratio and NMSE), it is irrelevant if we shift the histogram to the left or 
the right as long as we shift the quantization intervals in the same way. The best 
results could be achieved if we have a multimodal histogram with peaks centered 
at the quantization points. 

Using neural networks for both PCA and quantization, this goal could e.g. be achie­
ved by a modular network as in Figure 3 for the 4/2 pyramid. For quantization, 
we could either apply a vector quantizer to a whole patch of the Laplace level, or 
use a scalar quantizer (as depicted in Figure 3) for each pixel of the Laplace level. 
In the second case, we have to constrain the weights of the quantization network to 
be identical for every Laplace pixel. Since scalar quanti.zation is simpler to analyze 
and uses less free parameters, we only consider this case. 

As each quantization subnetwork can be treated separately (we only have to average 
the weight changes over all subnetworks), the following only considers the case of 
one output unit of the PCA network. 
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Quantization peA 

Figure 3: PCA network and Quantization network 

The error to be minimized is the squared quantization error 

where p refers to the patterns in the training set, Ck is the kth weight of the quan­
tization network, and 1 is the output of the PCA-Laplace unit. 

Changing the weights of the quantization network by gradient descent leads to the 
LVQl rule of Kohonen 

Ac - { 2a(lp - Ck), if k = kp is the winning unit, 
k - 0, otherwise. 

For the PCA network we can proceed similarly to back-propagation to obtain the 
rule 

AWij = -K 8Ep = _K 8Ep alp = _K 8Ep 8~p 8i~ = -2K(lp _ Ck) 8i~ . 
8Wij alp 8Wij alp 8z~ 8Wij 8Wij 

Of course, this is only one out of many possible algorithms. More elaborate mi­
nimization techniques than gradient descent could be used; similarly, LVQl could 
be replaced by a different quantization algorithm. But the basic idea of letting 
the quantization step and the the compression step adapt to each other remains 
unchanged. 

4 Conclusions 

In this paper, we presented a new image compression scheme based on neural net­
works. The PCA and PCA-Laplace pyramids were introduced, which can be seen 
as both an extension of image pyramids to learning pyramids and as cascaded, lo­
cally connected autoassociators. The results achieved are promising and compare 
favorably to work reported in the literature. 

A lot of work remains to be done to analyze these networks analytically. The 
convergence properties of the PCA pyramid are not known; we expect results similar 
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to the ones (Baldi and Hornik, 1989) for the autoassociative network. Also, for the 
PCA network it would be desirable to characterize the features which are extracted. 
Similarly, the integrated network needs to be analyzed. It is clear that for such 
networks, the usual error function has local minima, but maybe they can be avoided 
by a proper training regime (i.e. start training the PCA pyramid, then train the 
vector quantizer, and finally train them together). 
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