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Abstract 

A fundamental open problem in computer vision-determining 
pose and correspondence between two sets of points in space­
is solved with a novel, robust and easily implementable algorithm. 
The technique works on noisy point sets that may be of unequal 
sizes and may differ by non-rigid transformations. A 2D varia­
tion calculates the pose between point sets related by an affine 
transformation-translation, rotation, scale and shear. A 3D to 3D 
variation calculates translation and rotation . An objective describ­
ing the problem is derived from Mean field theory. The objective 
is minimized with clocked (EM-like) dynamics. Experiments with 
both handwritten and synthetic data provide empirical evidence 
for the method. 

1 Introduction 

Matching the representations of two images has long been the focus of much research 
in Computer Vision, forming an essential component of many machine-based ob-
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ject recognition systems. Critical to most matching techniques is the determination 
of correspondence between spatially localized features within each image. This 
has traditionally been considered a hard problem - especially when the issues of 
noise, missing or spurious data, and non-rigid transformations are tackled [Grim­
son, 1990] . Many approaches have been tried, with tree-pruning techniques and 
generalized Hough transforms being the most common. We introduce anew, ro­
bust and easily implementable algorithm to find such poses and correspondences. 
The algorithm can determine non-rigid transformations between noisy 2D or 3D 
spatially located unlabeled feature sets despite missing or spurious features. It is 
derived by minimizing an objective function describing the problem with a combi­
nation of optimization techniques, incorporating Mean Field theory, slack variables, 
iterative projective scaling, and clocked (EM-like) dynamics. 

2 2D with Affine Transformations 

2.1 Formulating the Objective 

Our first algorithm calculates the pose between noisy, 2D point sets of unequal size 
related by an affine transformation - translation, rotation, scale and shear. Given 
two sets of points {Xj} and {Yk}, one can minimize the following objective to find 
the affine transformation and permutation which best maps Y onto X : 

J K J K 

E2D(m, t, A) = L L mjkllXj - t - AYkll2 + g(A) - aLL mjk 
j=l k=l j=l k=l 

with constraints: Vj Ef=l mjk ~ 1 , Vk Ef=l mjk ~ 1 , Vjk mjk ~ 0 and 

g(A) = 1a2 + /'i,b2 + AC2 

A is decomposed into scale, rotation, vertical shear and oblique shear as follows: 

where, 

s(a) = ( eOa o ) ( cosh(c) 
b ,Sh2 (c) = . h( ) e- sm c 

sinh(c) ) 
cosh(c) 

R(8) is the standard 2x2 rotation matrix. g(A) serves to regularize the affine trans­
formation - bounding the scale and shear components. m is a fuzzy correspondence 
matrix which matches points in one image with corresponding points in the other 
image. The constraints on m ensure that each point in each image corresponds to 
at most one point in the other image. However, partial matches are allowed, in 
which case the sum of these partial matches may add up to no more than one. The 
inequality constraint on m permits a null match or multiple partial matches. 

The a term biases the objective towards matches. The decomposition of A in the 
above is not required, since A could be left as a 2x2 matrix and solved for directly in 
the algorithm that follows . The decomposition just provides for more precise regu­
larization, i.e., specification of the likely kinds oftransformations. Also Sh2(C) could 
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be replaced by another rotation matrix, using the singular value decomposition of 
A. 

We transform the inequality constraints into equality constraints by introducing 
slack variables, a standard technique from linear programming; 

K K+1 

V j L mj k ::; 1 -+ V j L mj k = 1 
k=l k=l 

and likewise for the column constraints. An extra row and column are added to 
the matrix m to hold the slack variables. Following the treatment in [Peterson and 
Soderberg, 1989; Yuille and Kosowsky, 1994] we employ Lagrange multipliers and 
an x log x barrier function to enforce the constraints with the following objective: 

J K J K 

E2D(m, t, A) = L L mjkllXj - t - AYk ll 2 + g(A) - ct L L mjk 
j=l k=l j=l k=l 

1 J+1K+1 J K+1 K J+l 

+~ L: L mik(logmjk -1) + LJlj(L mjk -1) + LlIk(L mjk -1) (1) 
i=l k=l i=l k=l k=l j=l 

In this objective we are looking for a saddle point. (1) is minimized with respect to 
m, t, and A which are the correspondence matrix, translation, and affine transform, 
and is maximized with respect to Jl and 1I, the Lagrange multipliers that enforce 
the row and column constraints for m. m is fuzzy, with the degree of fuzziness 
dependent upon f3. 

2.2 The Algorithm 

The algorithm to minimize the above objective proceeds in two phases. In phase 
one, while {t, A} are held fixed, m is initialized with a coordinate descent step, 
described below, and then iteratively normalized across its rows and columns until 
the procedure converges (iterative projective scaling). This phase is analogous to a 
softmax update, except that instead of enforcing a one-way, winner-take-all (max­
imum) constraint, a two-way, assignment constraint is being enforced. Therefore 
we describe this phase as a softassign. In phase two {t, A} are updated using co-
ordinate descent. Then f3 is increased and the loop repeats. Let E2D be the above 
objective (1) without the terms that enforce the constraints (i.e. the x log x barrier 
function and the Lagrange parameters). 

In phase one (softassign) m is updated via coordinate descent: 

aE2D 
mjk = exp(-f3-a-) 

mjk 

Then m is iteratively normalized across j and k until Ef=l Ef=l Llmiajk < i : 

Using coordinate descent the {t, A} are updated in phase two. If a term of {A} 
cannot be computed analytically (because of its regularization), Newton's method 
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is used to compute the root of the function . So if a is a term of {t, A} then in phase 

two we update a such that 8!~D = O. Finally f3 is increased and the loop repeats. 

By setting the partial derivatives of E2D to zero and initializing the Lagrange pa­
rameters to zero, the algorithm for phase one may be derived . Beginning with a 
small f3 allows minimization over a fuzzy correspondence matrix m, for which a 
global minimum is easier to find. Raising f3 drives the m's closer to 0 or 1, as the 
algorithm approaches a saddle point. 

3 3D with Rotation and Translation 

The second algorithm solves the 3D-3D pose estimation problem with unknown 
correspondence. Given two sets of 3D points {Xj} and {Yk} find the rotation R, 
translation T, and correspondence m that minimize 

J K J K 

E3D(m,T,R) = LLmjkllRXj +T-YkI12-aLLmjk 
j=l k=1 j=l k=1 

with the same constraint on the fuzzy correspondence matrix m as in 2D affine 
matching. Note that there is no regularization term for the T - R parameters. 

This algorithm also works in two phases. In the first, m is updated by a soft assign 
as was described for 2D affine matching. In the second phase, m is fixed, and the 
problem becomes a 3D to 3D pose estimation problem formulated as a weighted least 
squares problem. The rotation and translation are represented by a dual number 
quaternion (r, s) which corresponds to a screw coordinate transform [Walker et al. , 
1991] . The rotation can be written as R(r) = W(r)tQ(r) and the translation as 
W(r)ts . Using these representations, the objective function becomes 

J K 

E3D = L L mjkllW(r)tQ(r)xj + W(r)t s - Ykl1 2 

j=1 k=1 

where Xj = (Xj, 0)1 and Yk = (Yk,O)t are the quaternion representations of Xj 
and Yk, respectively. Using the properties that Q(a)b = W(b)a and Q(a)tQ(a) = 
W(a)tW(a) = (ata)J, the objective function can be rewritten as 

where 

J K 

- L L mjkQ(Yk)tW(Xj) 
j=1k=1 

1 J K 

2LLmjkI 
j=1k=1 

J K 

C3 = L L mjk(W(Xj) - Q(Yk)). 
j=1k=1 

(2) 
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With this new representation, all the information, including the current fuzzy esti­
mate of the correspondence m are absorbed into the three 4-by-4 matrices Cl, C2 , C3 

in (2), which can be minimized in closed-form [Walker et al., 1991]. 

4 Experimental Results 

In this section we provide experimental results for both the 20 and 30 matching 
problems. As an application of the 20 matching algorithm, we present results in 
the context of handwritten character recognition. 

4.1 Handwritten Character Data 

The data were generated using an X-windows tool which enables us to draw an 
image with the mouse on a writing pad on the screen. The contours of the images 
are discretized and are expressed as a set of points in the plane. In the experiments 
below, we generate 70 points per character on average. 

The inputs to the point matching algorithm are the x-y coordinates generated by the 
drawing program. No other pre-processing is done. The output is a correspondence 
matrix and a pose. In Figures 1 and 2, we show the correspondences found between 
several images drawn in this fashion.To make the actual point matches easier to 
see, we have drawn the correspondences only for every other model point . 

~ : ..... -_ ........ _ ..........• 

Figure 1: Correspondence of digits 

In one experiment, we drew examples of individual digits, one as a model digit 
and then many different variations of it. In Figure 1, it can be seen that the 
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Figure 2: Correspondence: "a" found in "cat", "0" found in "song" 

correspondences are good for a large variation from the model digit. For example, 
the correspondence is invariant to scale. Also, the correspondence is good between 
distorted digits, as in 3 and 6, or between different forms of a digit as in 4, 3, and 
2. 

In another experiment (Figure 2), individual letters are correctly identified within 
words. Here, no pre-processing to segment the cursive word into letters is done. 
The correspondence returned by the point matching algorithm by itself can be good 
enough for identification. Even similar letters may be differentiated, for example 
the "a" in "cat" is correctly identified even though the "e" has a similar shape and 
the "0" is correctly identified in "song" , despite the similarity of the "s". 

4.2 Randomly generated point sets: 2D 

In the second set of experiments, randomly generated dot patterns were used. In 
each trial a model is created by randomly generating with a uniform distribution, 50 
points on a grid of unit area. Independent Gaussian noise N(O, 0-) is added to each of 
the points creating a jittered image. Then a fraction, Pd, of points are deleted, and 
a fraction, P6, of spurious points are added, randomly on the unit square. Finally, 
a randomly generated transformation is applied to the set to generate a new image. 
The objective then is to recover the transformation and correspondence between 
the transformed image and the original point set. 

The transformations we have considered are A -+ (Translation, rotation, scale) and 
the full affine transformation, A -+ (Translation, rotation, scale, vertical shear, 
oblique shear) The transformation parameters, {tz, ty , (J, a, b, c} are bounded in the 
following way: -0.5 < tz , ty < 0.5, -270 < (J < 270 , 0.5 ~ ea ~ 2 where a is the 
scale parameter, and 0.7 ~ eb,ee ~ 1/0.7 where b,c are the parameters for the two 
shears. Each of the parameters is chosen independently and uniformly from the 
possible ranges. 

ocrt.a.1 e • .,ima"te • 
We use the error measure ea = 31 a w'id~h", 1 where ea IS the error measure 
for parameter a and widtha is the range of permissible values for a . Dividing by 
widtha is preferable to dividing by aaetual, which incorrectly weights small aaetual 

values. The reported error (y axes of Figure 3) is the average error over all the 
parameters. 
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The time to recover the correspondence and transformation for a problem instance 
of 50 points is about 50 seconds on a Silicon Graphics workstation with a R4400 
processor. By varying parameters such as the annealing rate or stopping criterion, 
this can be reduced to about 20 seconds with some degradation in accuracy. For 
each trial combinations of u E {0.01, 0.02, ... , 0.08} and Pd E {O%, 10%,30%, 50%} 
and P6 E {O%, 10%} were used. 

Results are reported separately for transformations A and A. For each combina­
tion of (U,Pd,P6) 500 test instances were generated. Each data point in Figures 
3.a and 3.b represents the average error measure for these 500 experiments. The 
noise and/or deletion-addition factor increases the error measure monotonically. As 
expected, the transformation A has better results than the affine transformation A. 
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Figure 3: 2D Results for Synthetic Data 

x: Pd = 0.0,P6 = 0.0, 
+ : Pd = 0.3,P6 = 0.1, 

0: Pd = O.l,p& = 0.1 
* : Pd = 0.5,p& = 0.1 

4.3 Randomly generated point sets: 3D 

A test instance for 3D point matching involves generating a random 3D point set 
as a model image, and then generating a test image by applying a random trans­
formation, adding noise and then randomly deleting points. 

20 points are generated uniformly within an unit cube. The parameters for the 
transformation are generated as follows: The three rotation angles for R are selected 
from a uniform distribution U[20, 70]. Translation parameters T~, Ty, Tz are selected 
from a uniform distribution U[2.5,7.5]. Gaussian noise N(O, u) is added to the 
points. The objective then is to recover the three translation and three rotation 
parameters and to find the correspondence between this and the original point set. 
The results are summarized in Figure 4. 
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Figure 4: 3D Results for Synthetic Data 

x: Pd = 0.0,P8 = 0.0, 
+ : Pd = 0.2,P8 = 0.2, 

5 Conclusion 

0 : Pd = 0.1,P8 = 0.1 
*: Pd = 0.3, ps = 0.3 

We have developed an algorithm for solving 2D and 3D correspondence problems. 
The algorithm handles significant noise, missing or spurious features , and non­
rigid transformations. Moreover it works with point feature data alone; inclusion 
of other types of feature information could improve its accuracy and speed . This 
approach may also be extended to solve multi-level problems. Additionally, the 
affine transform might be modified to include higher order transformations. It may 
also be used as a distance measure in learning [Gold et al.,1994] . 
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