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Abstract 

We investigate the computational power of a formal model for net­
works of spiking neurons, both for the assumption of an unlimited 
timing precision, and for the case of a limited timing precision. We 
also prove upper and lower bounds for the number of examples that 
are needed to train such networks. 

1 Introduction and Basic Definitions 

There exists substantial evidence that timing phenomena such as temporal differ­
ences between spikes and frequencies of oscillating subsystems are integral parts 
of various information processing mechanisms in biological neural systems (for a 
survey and references see e.g. Abeles, 1991; Churchland and Sejnowski, 1992; Aert­
sen, 1993). Furthermore simulations of a variety of specific mathematical models 
for networks of spiking neurons have shown that temporal coding offers interesting 
possibilities for solving classical benchmark-problems such as associative memory, 
binding, and pattern segmentation (for an overview see Gerstner et al., 1992). Some 
aspects of these models have also been studied analytically, but almost nothing is 
known about their computational complexity (see Judd and Aihara, 1993, for some 
first results in this direction). In this article we introduce a simple formal model 
SNN for networks of spiking neurons that allows us to model the most important 
timing phenomena of neural nets (including synaptic modulation), and we prove up­
per and lower bounds for its computational power and learning complexity. Further 
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details to the results reported in this article may be found in Maass, 1994a,1994b, 
1994c. 

Definition of a Spiking Neuron Network (SNN): An SNN N consists of 

- a finite directed graph {V, E} (we refer to the elements of V as "neurons" 
and to the elements of E as "synapses") 

- a subset Yin S; V of input neurons 

- a subset Vout S; V of output neurons 

- for each neuron v E V - Yin a threshold-function 9 v : R+ -+ R U {oo} 
{where R+ := {x E R : x ~ O}) 

- for each synapse {u, v} E E a response-function £u,v : R+ -+ R and a 
weight- function Wu,v : R+ -+ R . 

We assume that the firing of the input neurons v E Yin is determined from outside 
of N, i.e. the sets Fv S; R+ of firing times ("spike trains") for the neurons v E 
Yin are given as the input of N. Furthermore we assume that a set T S; R+ of 
potential firing times 7iiiSfjeen fixed. 

For a neuron v E V - Yin one defines its set Fv of firing times recursively. The 
first element of Fv is inf{t E T : Pv(t) ~ 0 v(O)} , and for any s E Fv the next 
larger element of Fv is inf{t E T : t > sand Pv(t) ~ 0 v(t - s)} ,where the 
potential function Pv : R+ -+ R is defined by 

Pv(t) := 0 + L L wu,v(s) . £u,v(t - s) 
u : {u, v} E EsE Fu : s < t 

The firing times ("spike trains") Fv of the output neurons v E Vout that result in 
this way are interpreted as the output of N. 

Regarding the set T of potential firing times we consider in this article the case 
T = R+ (SNN with continuous time) and the case T = {i· JJ : i E N} for some JJ 
with 1/ JJ E N (SNN with discrete time). 

We assume that for each SNN N there exists a bound TN E R with TN > 0 such 
that 0 v(x) = 00 for all x E (0, TN) and all v E V - Yin (TN may be interpreted 
as the minimum of all "refractory periods" Tref of neurons in N). Furthermore we 
assume that all "input spike trains" Fv with v E Yin satisfy IFv n [0, t]l < 00 for 
all t E R+. On the basis of these assumptions one can also in the continuous case 
easily show that the firing times are well-defined for all v E V - Yin (and occur in 
distances of at least TN)' 

Input- and Output-Conventions: For simulations between SNN's and Turing 
machines we assume that the SNN either gets an input (or produces an output) 
from {O, 1}* in the form of a spike-train (i.e. one bit per unit of time), or encoded 
into the phase-difference of just two spikes. Real-valued input or output for an SNN 
is always encoded into the phase-difference of two spikes. 

Remarks 
a) In models for biological neural systems one assumes that if x time-units have 
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passed since its last firing, the current threshold 0 11 (z) of a neuron v is "infinite" 
for z < TreJ (where TreJ = refractory period of neuron v), and then approaches 
quite rapidly from above some constant value. A neuron v "fires" (i.e. it sends an 
"action potential" or "spike" along its axon) when its current membrane potential 
PII (t) at the axon hillock exceeds its current threshold 0 11 . PII (t) is the sum of 
various postsynaptic potentials W U ,II(S). t:U ,II(t - s). Each of these terms describes an 
excitatory (EPSP) or inhibitory (IPSP) postsynaptic potential at the axon hillock of 
neuron v at time t, as a result of a spike that had been generated by a "presynaptic" 
neuron u at time s, and which has been transmitted through a synapse between both 
neurons. Recordings of an EPSP typically show a function that has a constant value 
c (c = resting membrane potential; e.g. c = -70m V) for some initial time-interval 
(reflecting the axonal and synaptic transmission time), then rises to a peak-value, 
and finally drops back to the same constant value c. An IPSP tends to have the 
negative shape of an EPSP. For the sake of mathematical simplicity we assume in 
the SNN-model that the constant initial and final value of all response-functions 
t:U ,1I is equal to 0 (in other words: t:U ,1I models the difference between a postsynaptic 
potential and the resting membrane potential c). Different presynaptic neurons u 
generate postsynaptic potentials of different sizes at the axon hillock of a neuron 
v, depending on the size, location and current state of the synapse (or synapses) 
between u an? v. This effect is modelled by the weight-factors W U ,II(S). 

The precise shapes of threshold-, response-, and weight-functions vary among dif­
ferent biological neural systems, and even within the same system. Fortunately one 
can prove significant upper bounds for the computational complexity of SNN's N 
without any assumptions about the specific shapes of these functions of N. Instead, 
we only assume that they are of a reasonably simple mathematical structure. 

b) In order to prove lower bounds for the computational complexity of an SNN N 
one is forced to make more specific assumptions about these functions . All lower 
bound results that are reported in this article require only some rather weak basic 
assumptions about the response- and threshold-functions. They mainly require 
that EPSP's have some (arbitrarily short) segment where they increase linearly, 
and some (arbitrarily short) segment where they decrease linearly (for details see 
Maass, 1994a, 1994b). 

c) Although the model SNN is apparently more "realistic" than all models for bio­
logical neural nets whose computational complexity has previously been analyzed, 
it deliberately sacrifices a large number of more intricate biological details for the 
sake of mathematical tractability. Our model is closely related to those of (Buh­
mann and Schulten, 1986), and (Gerstner, 1991, 1992). Similarly as in (Buhmann 
and Schulten, 1986) we consider here only the deterministic case. 

d) The model SNN is also suitable for investigating algorithms that involve synaptic 
modulation at various time-scales. Hence one can investigate within this framework 
not only the complexity of algorithms for supervised and unsupervised learning, but 
also the potential computational power of rapid weight-changes within the course of 
a computation. In the theorems of this paper we allow that the value of a weight 
WU,II(S) at a firing time s E Fu is defined by an algebraic computation tree (see van 
Leeuwen, 1990) in terms of its value at previous firing times s' E Fu with s' < s, 
some preceding firing times s < s of arbitrary other neurons, and arbitrary real­
valued parameters. In this way WU,II(S) can be defined by different rational functions 
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of the abovementioned arguments, depending on the numerical relationship between 
these arguments (which can be evaluated by comparing first the relative size of 
arbitrary rational functions of these arguments). As a simple special case one can 
for example increase wu •tI (perhaps up to some specified saturation-value) as long 
as neurons u and v fire coherently, and decrease wu •tI otherwise. 

For the sake of simplicity in the statements of our results we assume in this extended 
abstract that the algebraic computation tree for each weight wU •tI involves only 
0(1) tests and rational functions of degree 0(1) that depend only on 0(1) of the 
abovementioned arguments. Furthermore we assume in Theorems 3, 4 and 5 that 
either each weight is an arbitrary time-invariant real, or that each current weight is 
rounded off to bit-length poly(1ogpN') in binary representation, and does not depend 
on the times of firings that occured longer than time 0(1) ago. Furthermore we 
assume in Theorems 3 and 5 that the parameters in the algebraic computation tree 
are rationals of bit-length O(1ogpN'). 

e) It is well-known that the Vapnik-Chervonenkis dimension {"VC-dimension"} of 
a neural net N (and the pseudo-dimension for the case of a neural net N with real­
valued output, with some suitable fixed norm for measuring the error) can be used 
to bound the number of examples that are needed to train N (see Haussler, 1992). 
Obviously these notions have to be defined differently for a network with time­
dependent weights. We propose to define the VC-dimension (pseudo-dimension)of 
an SNN N with time-dependent weights as the VC-dimension (pseudo-dimension) 
of the class of all functions that can be computed by N with different assignments of 
values to the real-valued (or rational-valued) parameters of N that are involved in 
the definitions of the piecewise rational response-, threshold-, and weight-functions 
of N. In a biological neural system N these parameters might for example reflect 
the concentrations of certain chemical substances that are known to modulate the 
behavior of N. 
f) The focus in the investigation of computations in biological neural systems differs 
in two essential aspects from that of classical computational complexity theory. 
First, one is not only interested in single computations of a neural net for unrelated 
inputs z, but also in its ability to process an interrelated sequence «(z( i), y( i)} )ieN 
of inputs and outputs, which may for example include an initial training sequence 
for learning or associative memory. Secondly, exact timing of computations is all­
important in biological neural nets, and many tasks have to be solved within a 
specific number of steps. Therefore an analysis in terms of the notion of a real-time 
computation and real-time simulation appears to be more adequate for models of 
biological neural nets than the more traditional analysis via complexity classes. 

One says that a sequence «(z(i),y(i)})ieN is processed in real-time by a machine 
M, if for every i E N the machine M outputs y( i) within a constant number c of 
computation steps after having received input z(i). One says that M' simulates M 
in real-time (with delay factor ~), if every sequence that is processed in real-time 
by M (with some constant c), can also be processed in real-time by M' (with a 
constant ~ . c). For SNN's M we count each spike in M as a computation step. 

These definitions imply that a real-time simulation of M by M' is a special case of 
a linear-time simulation, and hence that any problem that can be solved by M with 
a certain time complexity ten), can be solved by M' with time complexity O(t(n» 
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(see Maass, 1994a, 1994b, for details). 

2 Networks of Spiking Neurons with Continuous Time 

Theorem 1: If the response- and threshold-functions of the neurons satisfy some 
rather weak basic assumptions (see Maass, 1994a, 1994b), then one can build from 
such neurons for any given dEN an SNN NTM(d) of finite size with rational 
delays that can simulate with a suitable assignment of rational values from [0, 1] to 
its weights any Turing machine with at most d tapes in real-time. 

Furthermore NTM(2) can compute any function F : {0,1}* -- {0,1}* with a 
suitable assignment of real values from [0,"1] to its weights. 

The fixed SNN NTM(d) of Theorem 1 can simulate Turing machines whose tape 
content is much larger than the size of NTM (d), by encoding such tape content into 
the phase-difference between two oscillators. The proof of Theorem 1 transforms ar­
bitrary computations of Turing machines into operations on such phase-differences. 

The last part of Theorem 1 implies that the VC-dimension of some finite SNN's 
is infinite. In contrast to that the following result shows that one can give finite 
bounds for the VC-dimension of those SNN's that only use a bounded numbers of 
spikes in their computation. Furthermore the last part of the claim of Theorem 2 
implies that their VC-dimension may in fact grow linearly with the number S of 
spikes that occur in a computation. 

Theorem 2: The VC-dimension and pseudo-dimension of any SNN N with piece­
wise linear response- and threshold-functions, arbitrary real-valued parameters and 
time-dependent weights (as specified in section 1) can be bounded (even for real­
valued inputs and outputs) by D(IEI . WI . S(log IVI + log S» if N uses in each 
computation at most S spikes. 

Furthermore one can construct SNN's (with any response- and threshold-functions 
that satisfy our basic assumptions, with fixed rational parameters and rational time­
invariant weights) whose VC-dimension is for computations with up to S spikes as 
large as O(IEI . S). 

We refer to Maass, 1994a, 1994c, for upper bounds on the computational power of 
SNN's with continuous time. 

3 Networks of Spiking Neurons with Discrete Time 

In this section we consider the case where all firing times of neurons in N are 
multiples of some J.l with 1/ J.l EN. We restrict our attention to the biologically 
plausible case where there exists some tN ~ 1 such that for all z > tN all response 
functions £U,II(Z) have the value ° and all threshold functions ell(z) have some 
arbitrary constant value. If tN is chosen minimal with this property, we refer to 
PN := rtN/J.ll as the timing-precision ofN. Obviously for PN = 1 the SNN is 
equivalent to a "non-spiking" neural net that consists of linear threshold gates, 
whereas a SNN with continuous time may be viewed as the opposite extremal case 
for PN -- 00. 
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The following result provides a significant upper bound for the computational power 
of an SNN with discrete time, even in the presence of arbitrary real-valued parame­
ters and weights. Its proof is technically rather involved. 

Theorem 3: Assume that N is an SNN with timing-precision PJII, piecewise polyno­
mial response- and piecewise rational threshold-functions with arbitrary real-valued 
parameters, and weight-functions as specified in section 1. 

Then one can simulate N for boolean valued inputs in real-time by a Turing ma­
chine with poly(lVl, logpJII,log l/TJII) states and poly(lVl, logpJII, tJII/TJII) tape-cells. 

On the other hand any Turing machine with q states that uses at most s tape­
cells can be simulated in real-time by an SNN N with any response- and threshold­
functions that satisfy our basic assumptions, with rational parameters and time­
invariant rational weights, with O(q) neurons, logpJII = O(s), and tJII/TJII = 0(1). 

The next result shows that the VC-dimension of any SNN with discrete time is 
finite, and grows proportionally to logpJII. The proof of its lower bound combines a 
new explicit construction with that of Maass, 1993. 

Theorem 4: Assume that the SNN N has the same properties as in Theorem 3. 
Then the VC-dimension and the pseudo-dimension of N (for arbitrary real valued 
inputs) can be bounded by O(IEI·IVI·logpJII), independently of the number of spikes 
in its computations. 

Furthermore one can construct SNN's N of this type with any response- and 
threshold-functions that satisfy our basic assumptions, with rational parameters and 
time-invariant rational weights, so that N has (already for boolean inputs) a VC­
dimension of at least O(IEI(logpJII + log IE!». 

4 Relationships to other Computational Models 

We consider here the relationship between SNN's with discrete time and recurrent 
analog neural nets. In the latter no "spikes" or other non-trivial timing-phenomena 
occur, but the output of a gate consists of the "analog" value of some squashing­
or activation function that is applied to the weighted sum of its inputs. See e.g. 
(Siegelmann and Sontag, 1992) or (Maass, 1993) for recent results about the compu­
tational power of such models. We consider in this section a perhaps more "realistic" 
version of such modelsN, where the output of each gate is rounded off to an integer 
multiple of some ~ (with a EN). We refer to a as the number of activation levels 
of N. 

It is an interesting open problem whether such analog neural nets (with gate-outputs 
interpreted as firing rates) or networks of spiking neurons provide a more adequate 
computational model for biological neural systems. Theorem 5 shows that in spite 
of their quite different structure the computational power of these two models is in 
fact closely related. 

On the side the following theorem also exhibits a new subclass of deterministic 
finite automata (DFA's) which turns out to be of particular interest in the context 
of neural nets. We say that a DFA M is a sparse DFA of size s if M can be realized 
by a Turing machine with s states and space-bound s (such that each step of M 
corresponds to one step of the Turing machine). Note that a sparse DFA may have 
exponentially in s many states, but that only poly(s) bits are needed to describe its 
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transition function. Sparse DFA's are relatively easy to construct, and hence are 
very useful for demonstrating (via Theorem 5) that a specific task can be carried 
out on a "spiking" neural net with a realistic timing precision (respectively on an 
analog neural net with a realistic number of activation levels). 

Theorem 5: The following classes of machines have closely related computational 
power in the sense that there is a polynomial p such that each computational model 
from any of these classes can be simulated in real-time (with delay-factor ~ p(s») by 
some computational model from any other class (with the size-parameter s replaced 
by p(s»): 

• sparse DFA's of size s 
• SNN's with 0(1) neurons and timing precision 23 

• recurrent analog neural nets that consist of O( 1) gates with piecewise ra­
tional activation functions with 23 activation levels, and parameters and 
weights of bit-length $ s 

• neural nets that consist of s linear threshold gates (with recurrencies) with 
arbitrary real weights. 

The result of Theorem 5 is remarkably stable since it holds no matter whether one 
considers just SNN's N with 0(1) neurons that employ very simple fixed piecewise 
linear response- and threshold-functions with parameters of bit-length 0(1) (with 
tN/TN = 0(1) and time-invariant weights of bit-length $ s), or if one considers 
SNN's N with s neurons with arbitrary piecewise polynomial response- and piece­
wise rational threshold-functions with arbitrary real-valued parameters, tN/TN ~ s, 
and time-dependent weights (as specified in section 1). 

5 Conclusion 

We have introduced a simple formal model SNN for networks of spiking neurons, 
and have shown that significant bounds for its computational power and sample 
complexity can be derived from rather weak assumptions about the mathematical 
structure of its response-, threshold-, and weight-functions. Furthermore we have 
established quantitative relationships between the computational power of a model 
for networks of spiking neurons with a limited timing precision (i.e. SNN's with 
discrete time) and a quite realistic version of recurrent analog neural nets (with a 
bounded number of activation levels). The simulations which provide the proof of 
this result create an interesting link between computations with spike-coding (in 
an SNN) and computations with frequency-coding (in analog neural nets). We also 
have established such relationships for the case of SNN's with continuous time (see 
Maass 1994a, 1994b, 1994c), but space does not permit to report these results in 
this article. 

The Theorems 1 and 5 of this article establish the existence of mechanisms for sim­
ulating arbitrary Turing machines (and hence any common computational model) 
on an SNN. As a consequence one can now demonstrate that a concrete task (such 
as binding, pattern-matching, associative memory) can be carried out on an SNN 
by simply showing that some arbitrary common computational model can carry out 
that task. Furthermore one can bound the required timing-precision of the SNN in 
terms of the space needed on a Turing machine. 
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Since we have based our investigations on the rather refined notion of a real-time 
simulation, our results provide information not only about the possibility to imple­
ment computations, but also adaptive behavior on networks of spiking neurons. 
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