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Abstract 

Although artificial neural networks have been applied in a variety of real-world scenarios 
with remarkable success, they have often been criticized for exhibiting a low degree of 
human comprehensibility. Techniques that compile compact sets of symbolic rules out 
of artificial neural networks offer a promising perspective to overcome this obvious 
deficiency of neural network representations. 
This paper presents an approach to the extraction of if-then rules from artificial neu­
ral networks. Its key mechanism is validity interval analysis, which is a generic 
tool for extracting symbolic knowledge by propagating rule-like knowledge through 
Backpropagation-style neural networks. Empirical studies in a robot arm domain illus­
trate the appropriateness of the proposed method for extracting rules from networks with 
real-valued and distributed representations. 

1 Introduction 
In the last few years artificial neural networks have been applied successfully to a variety 
of real-world problems. For example, neural networks have been successfully applied in 
the area of speech generation [12] and recognition [18], vision and robotics [8], handwritten 
character recognition [5], medical diagnostics [11], and game playing [13]. While in these 
and other approaches neural networks have frequently found to outperform more traditional 
approaches, one of their major shortcomings is their low degree of human comprehensibility. 

In recent years, a variety of approaches for compiling rules out of networks have been 
proposed. Most approaches [1, 3,4,6, 7, 16, 17] compile networks into sets of rules with 
equivalent structure: Each processing unit is mapped into a separate rule-or a smal1 set 
of rules-, and the ingoing weights are interpreted as preconditions to this rule. Sparse 
connectivity facilitates this type rule extraction, and so do binary activation values. In order 
to enforce such properties, which is a necessary prerequisite for these techniques to work 
effectively, some approaches rely on specialized training procedures, network initializations 
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and/or architectures. 

While such a methodology is intriguing, as it draws a clear one-to-one correspondence 
between neural inference and rule-based inference, it is not universally applicable to arbitrary 
Backpropagation-style neural networks. This is because artificial neural networks might not 
meet the strong representational and structural requirements necessary for these techniques 
to work successfully. When the internal representation of the network is distributed in nature, 
individual hidden units typically do not represent clear, logical entities. One might argue that 
networks, if one is interested in extracting rules, should be constructed appropriately. But this 
would outrule most existing network implementation~, as such considerations have barely 
played a role. In addition, such an argument would suppress the development of distributed, 
non-discrete internal representations, which have often be attributed for the generalization 
properties of neural networks. It is this more general class of networks that is at stake in this 
paper. 

This paper presents a rule extraction method which finds rules by analyzing networks as a 
whole. The rules are of the type "if X then y," where both x and y are described by a linear set 
of constraints. The engine for proving the correspondence of rule and network classification is 
VI-Analysis. Rules extracted by VI-Analysis can be proven to exactly describe the network. 

2 Validity-Interval Analysis 
Validity Interval Analysis (in short: VI-Analysis) is a generic tool for analyzing the input­
output behavior of Backpropagation-style neural networks. In short, they key idea of VI­
Analysis is to attach intervals to the activation range of each unit (or a subset of all units, 
like input and output units only), such that the network's activations must lie within these 
intervals. These intervals are called validity intervals. VI-Analysis checks whether such 
a set of intervals is consistent, i.e., whether there exists a set of network activations inside 
the validity intervals. It does this by iteratively refining the validity intervals, excluding 
activations that are provably inconsistent with other intervals. In what follows we will 
present the general VI-Analysis algorithm, which can be found in more detail elsewhere [14], 

Let n denote the total number of units in the network, and let Xi denote the (output) activation 
of unit i (i = 1, ... , n). If unit i is an input unit, its activation value will simply be the 
external input value. If not, i.e., if i refers to a hidden or an output unit, let P( i) denote the 
set of units that are connected to unit i through a link. The activation Xi is computed in two 
steps: 

with L WikXk + Oi 

kEP(i) 

The auxiliary variable neti is the net-input of unit i, and Wik and Oi are the weights and 
biases, respectively. O'j denotes the transfer function (squashing function), which usually is 
given by 

1 + e-net , 

Validity intervals for activation values Xi are denoted by [ai, bi ]. If necessary, validity intervals 
are projected into the net-input space of unit i, where they will be denoted by [a~, b~]. Let 
T be a set of validity intervals for (a subset of) all units. An activation vector (XI, .. " xn) 
is said to be admissible with respect to T, if all activations lie in T. A set of intervals T is 
consistent, if there exists an admissible activation vector. Otherwise T is inconsistent. 

Assume an initial set of intervals, denoted by T, is given (in the next section we will present 
a procedure for generating initial intervals). VI-Analysis refines T iteratively using linear 
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non-linear .<;quashing functioll' CJ 

linear equations 

Figure 1: VI-Analysis in a single weight layer. Units in layer P are connected to the units 
in layer S. A validity interval [aj, bj ] is assigned to each unit j E PuS. By projecting the 
validity intervals for all i E S, intervals [a~, b~] for the net-inputs netj are created. These, plus 
the validity intervals for all units k E P, form a set of linear constraints on the activations x k 

in layer P. Linear programming is now employed to refine all interval bounds one-by-one. 

programming [9], so that those activation values which are inconsistent with other intervals 
are excluded. In order to simplify the presentation, let us assume without loss of ¥enerality 
(a) that the network is layered and fully connected between two adjacent layers, and (b) 
that there is an interval [aj, bj ] ~ [0,1] in I for every unit in P and S.2 Consider a single 
weight layer, connecting a layer of preceding units, denoted by p, to a layer of succeeding 
units, denoted by S (cf Fig. 1). In order to make linear programming techniques applicable, 
the non-linearity of the transfer function must be eliminated. This is achieved by projecting 
[ai, bi ] back to the corresponding net-input intervals3 [ai, biJ = {T-I([ai' biD E ~2 for all 
i E S. The resulting validity intervals in P and S form the foIIowing set of linear constraints 
on the activation values in P: 

Vk E P: Xk > ak and Xk < bk 

Vi E S: L WjkXk + ()j > a~ [by substituting neti = L WikXk + ()d , 
kEP kEP (1) 

L WikXk + ()j < b~ , [by substituting netj = L WikXk + ()i] 
kEP kEP 

Notice that all these constraints are linear in the activation values Xk (k E P). Linear 
programming allows to maximize or minimize arbitrary linear combinations of the variables 
x j while not violating a set of linear constraints [9]. Hence, linear programming can be 
applied to refine lower and upper bounds for validity intervals one-by-one. 

In VI-Analysis, constraints are propagated in two phases: 

1. Forward phase. To refine the bounds aj and bj for units i E S, new bounds iii and hi are 

'This assumption simplifies the description of VI-Analysis, although VI-Analysis can also be applied 
to arbitrary non-layered, partially connected network architectures, as well as recurrent networks not 
examined here. 

2The canonical interval [0, I] corresponds to the state of maximum ignorance about the activation 
of a unit, and hence is the default interval if no more specific interval is known. 

3Here ~ denotes the set of real numbers extended by ±oo. Notice that this projection assumes that 
the transfer function is monotonic. 
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derived: 
with 

with 

A' a · z min neti 

= max neti 

Sebastian Thrun 

min L: WikXk + Oi 

kE1' 

max L: WikXk + OJ 

kE1' 

If o'i > ai, a tighter lower bound is found and ai is updated by o'i . Likewise, bi is set to hi 

if hi < bi . Notice that the minimax operator is computed within the bounds imposed by 
Eq. I, using the Simplex algorithm (linear programming) [9]. 

2. Backward phase. In the backward phase the bounds ak and bk of all units k E Pare 
refined. 

li k minxk and hk = max Xk 

As in the forward phase, ak is updated by o'k if lik > ak, and h is updated by hk if hk < bk. 

If the network has multiple weight layers, this process is applied to all weight layers one-by­
one. Repetitive refinement results in the propagation of interval constraints through multiple 
layers in both directions. The convergence of VI-Analysis follows from the fact that the 
update rule that intervals are changed monotonically, since they can only shrink or stay the 
same. 

Recall that the "input" of VI-Analysis is a set of intervals I ~ [0, l]n that constrain the 
activations of the network. VI-Analysis generates a refined set of intervals, I' ~ I, so that 
all admissible activation values in the original intervals I are also in the refined intervals 
I'. In other words, the difference between the original set of intervals and the refined set of 
intervals I - I' is inconsistent. 

In summary, VI-Analysis analyzes intervals I in order to detect inconsistencies. If I is 
found to be inconsistent, there is provably no admissible activation vector in I . Detecting 
inconsistencies is the driving mechanism for the verification and extraction of rules presented 
in turn. 

3 Rule Extraction 
The rules considered in this paper are propositional if-then rules. Although VI-Analysis is 
able to prove rules expressed by arbitrary linear constraints [14], for the sake of simplicity we 
will consider only rules where the precondition is given by a set of intervals for the individual 
input values, and the output is a single target category. Rules of this type can be written as: 

!linput E some hypercube I then class is C (or short: I -- C) 

for some target class C. 

The compliance of a rule with the network can be verified through VI-Analysis. Assume, 
without loss of generality, the network has a single output unit, and input patterns are classified 
as members of class C if and only if the output activation, Xout, is larger than a threshold 
e (see [14] for networks with multiple output units). A rule conjecture I -- C is then 
verified by showing that there is no input vector i E I that falls into the opposite class, 
,C. This is done by including the (negated) condition Xout E [0, e] into the set of intervals: 
Ineg = 1+ {xout E [0, e]}. If the rule is correct, Xout will never be in [0, e]. Hence, if 
VI-Analysis finds an inconsistency in Ineg, the rule I -- ,C is proven to be incorrect, and 
thus the original rule I -- C holds true for the network at hand. This illustrates how rules 
are verified using VI-Analysis. 

It remains to be shown how such conjectures can be generated in a systematic way. Two 
major classes of approaches can be distinguished, specific-to-general and general-to-specific. 
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Figure 2: Robot Ann. (a) Front view of two arm configurations. (b) Two-dimensional side 
view. The grey area indicates the workspace, which partially intersects with the table. 

1. Specific-to-general. A generic way to generate rules, which forms the basis for the 
experimental results reported in the next section, is to start with rather specific rules which 
are easy to verify, and gradually generalize those rules by enlarging the corresponding 
validity intervals. Imagine one has a training instance that, without loss of generality, falls 
into a class C. The input vector of the training instance already forms a (degenerate) set 
of validity intervals I. VI-Analysis will, applied to I, trivially confirm the membership in 
C, and hence the single-point rule I ~ C. Starting with I, a sequence of more general 
rule preconditions I C II C I2 C ... can be obtained by enlarging the precondition of 
the rule (i.e., the input intervals I) by small amounts, and using VI-Analysis to verify if 
the new rule is still a member of its class. In this way randomly generated instances can 
be used as "seeds" for rules, which are then generalized via VI-Analysis. 

2. General-to-specific. An alternative way to extract rules, which has been studied in more 
detail elsewhere [14], works from general to specific. General-to-specific rule search 
maintains a list of non-proven conjectures, R. R is initialized with the most general rules 
(like "everything is in C" and "nothing is in C"). VI-Analysis is then applied to prove 
rules in R. If it successfully confirms a rule, the rule and its complement is removed from 
R. If not, the rule is removed, too, but instead new rules are added to R. These new rules 
form a specialized version of the old rule, so that their disjunct is exactly the old rule. For 
example, new rules can be generated by splitting the hypercube spanned by the old rule into 
disjoint regions, one for each new rule. Then, the new set R is checked with VI-Analysis. 
The whole procedure continues till R is empty and the whole input domain is described by 
rules. In discrete domains, such a strategy amounts to searching directed acyclic graphs in 
breadth-first manner. 

Obviously, there is a variety of alternative techniques to generate meaningful rule hypotheses. 
For example, one might employ a symbolic learning technique such as decision tree learning 
[10] to the same training data that was used for training the network. The rules, which are a 
result of the symbolic approach, constitute hypotheses that can be checked using VI-Analysis. 

4 Empirical Results 
In this section we will be interested in extracting rules in a real-valued robot arm domain. We 
trained a neural network to model the forward kinematics function of a 5 degree-of-freedom 
robot arm. The arm, a Mitsubishi RV-Ml, is depicted in Fig. 2. Its kinematic function 
determines the position of the tip of the manipulator in (x, y, z) workspace coordinates and 
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coverage average (per rule) cumulative 
first 10 rules 9.79% 30.2% 
first 100 rules 2.59% 47.8% 
first 1 000 rules 1.20% 61.6% 
first 10000 rules 0.335% 84.4% 

Table 1: Rule coverage in the robot arm domain. These numbers inc1ude rules for both 
concepts, SAFE and UNSAFE. 

the angle of the manipulator h to the table based on the angles of the five joints. As can be 
seen in Fig. 2, the workspace intersects with the table on which the arm is mounted. Hence, 
some configurations of the joints are safe, namely those for which z ~ 0, whiJe others can 
physically not be reached without a col1ision that would damage the robot (unsafe). When 
operating the robot arm one has to be able to tell safe from unsafe. Henceforth, we are 
interested in a set of rules that describes the subspace of safe and unsafe joint configurations. 

A total of 8192 training examples was used for training the network (four input, five hidden 
and four output units), resulting in a considerably accurate model of the kinematics of the 
robot arm. Notice that the network operates in a continuous space. Obviously, compiling 
the network into logical rules node-by-node, as frequently done in other approaches to rule 
extraction, is difficult due to the real-valued and distributed nature of the internal represen­
tation. Instead, we applied VI-Analysis using a specific-to-general mechanism as described 
above. More specifically, we incrementally constructed a collection of rules that gradually 
covered the workspace of the robot arm. Rules were generated whenever a (random) joint 
configuration was not covered by a previously generated rule. Table 1 shows average results 
that characterize the extraction of rules. Initially, each rule covers a rather large fraction of 
the 5-dimensional joint configuration space. As few as 11 rules, on average, suffice to cover 
more than 50% (by volume) of the whole input space. However, these 50% are the easy half. 
As the domain gets increasingly covered by rules, gradually more specific rules are generated 
in regions closer to the c1ass boundary. After extracting 10,000 rules, only 84.4% of the input 
space is covered. Since the decision boundary between the two c1asses is highly non-linear, 
finitely many rules will never cover the input space completely. 

How general are the rules extracted by VI-Analysis? Genera])y speaking, for joint configu­
rations c10se to the c1ass boundary, i.e., where the tip of the manipulator is close to the table, 
we observed that the extracted rules were rather specific. If instead the initial configuration 
was closer to the center of a class, VI-Analysis was observed to produce more general rules 
that had a larger coverage in the workspace. Here VI-Analysis managed to extract surpris­
ingly general rules. For example, the configuration a = (300 ,800 ,200 ,600 , -200 ), which is 
depicted in Fig. 3, yields the rule 

!!.a2 ~ 90.50 and a3 ~ 27.30 then SAFE. 

Notice that out of 10 initial constraints, 8 were successfully removed by VI-Analysis. The 
rule lacks both bounds on a), a4 and as and the lower bounds on a2 and a3. Fig. 3a shows 
the front view of the initial arm configuration and the generalized rule (grey area). Fig. 3b 
shows a side view of the arm, along with a slice of the rule (the base joint a) is kept fixed). 
Notice that this very rule covers 17.1 % of the configuration space (by volume). Such general 
rules were frequently found in the robot arm domain. 

This conc1 udes the brief description of the experimental results. Not mentioned here are results 
with different size networks, and results obtained for the MONK's benchmark problems. For 
example, in the MONK's problems [15], VI-Analysis successfully extracted compact target 
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Figure 3: A single rule, extracted from the network. (a) Front view. (b) Two-dimensional 
side view. The grey area indicates safe positions for the tip of the manipulator. 

concepts using the originally published weight sets. These results can be found in [14]. 

5 Discussion 

In this paper we have presented a mechanism for the extraction of rules from Backpropagation­
style neural networks. There are several limitations of the current approach that warrant future 
research. (a) Speed. While the one-to-one compilation of networks into rules is fast, rule 
extraction via VI-Analysis requires mUltiple runs of linear programming, each of which can 
be computationally expensive [9]. Searching the rule space without domain-specific search 
heuristics can thus be a most time-consuming undertaking. In all our experiments, however, 
we observed reasonably fast convergence of the VI-Algorithm, and we successfully managed 
to extract rules from larger networks in reasonable amounts of time. Recently, Craven and 
Shavlik proposed a more efficient search method which can be applied in conjunction with 
VI-Analysis [2]. (b) Language. Currently VI-Analysis is limited to the extraction of if-then 
rules with linear preconditions. While in [14] it has been shown how to generalize VI-Analysis 
to rules expressed by arbitrary linear constraints, a more powerful rule language is clearly 
desirable. (c) Linear optimization. Linear programming analyzes multiple weight layers 
independently, resulting in an overly careful refinement of intervals. This effect can prevent 
from detecting correct rules. If linear programming is replaced by a non-linear optimization 
method that considers multiple weight layers simultaneously, more powerful rules can be 
generated. On the other hand, efficient non-linear optimization techniques might find rules 
which do not describe the network accurately. Moreover, it is generally questionable whether 
there will ever exist techniques for mapping arbitrary networks accurately into compact 
rule sets. Neural networks are their own best description, and symbolic rules might not be 
appropriate for describing the input-output behavior of a complex neural network. 

A key feature of of the approach presented in this paper is the particular way rules are 
extracted. Unlike other approaches to the extraction of rules, this mechanism does not 
compile networks into structurally equivalent set of rules. Instead it analyzes the input output 
relation of networks as a whole. As a consequence, rules can be extracted from unstructured 
networks with distributed and real-valued internal representations. In addition, the extracted 
rules describe the neural network accurately, regardless of the size of the network. This makes 
VI-Analysis a promising candidate for scaling rule extraction techniques to deep networks, in 
which approximate rule extraction methods can suffer from cumulative errors. We conjecture 
that such properties are important if meaningful rules are to be extracted in today's and 
tomorrow's successful Backpropagation applications. 
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