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Abstract 

Differentiation between the nodes of a competitive learning net­
work is conventionally achieved through competition on the ba­
sis of neural activity. Simple inhibitory mechanisms are limited 
to sparse representations, while decorrelation and factorization 
schemes that support distributed representations are computation­
ally unattractive. By letting neural plasticity mediate the compet­
itive interaction instead, we obtain diffuse, nonadaptive alterna­
tives for fully distributed representations. We use this technique 
to Simplify and improve our binary information gain optimiza­
tion algorithm for feature extraction (Schraudolph and Sejnowski, 
1993); the same approach could be used to improve other learning 
algorithms. 

1 INTRODUCTION 

Unsupervised neural networks frequently employ sets of nodes or subnetworks 
with identical architecture and objective function. Some form of competitive inter­
action is then needed for these nodes to differentiate and efficiently complement 
each other in their task. 
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Figure 1: Activity f and plasticity f' of a logistic node as a function of its net input 
y. Vertical lines indicate those values of y whose pre-images in input space are 
depicted in Figure 2. 

Inhibition is the simplest competitive mechanism: the most active nodes suppress 
the ability of their peers to learn, either directly or by depressing their activity. 
Since inhibition can be implemented by diffuse, nonadaptive mechanisms, it is an 
attractive solution from both neurobiological and computational points of view. 
However, inhibition can only form either localized (unary) or sparse distributed 
representations, in which each output has only one state with significant informa­
tion content. 

For fully distributed representations, schemes to decorrelate (Barlow and Foldiak, 
1989; Leen, 1991) and even factorize (Schmidhuber, 1992; Bell and Sejnowski, 1995) 
node activities do exist. Unfortunately these require specific, weighted lateral 
connections whose adaptation is computationally expensive and may interfere 
with feedforward learning. While they certainly have their place as competitive 
learning algorithms, the capability of biological neurons to implement them seems 
questionable. 

In this paper, we suggest an alternative approach: we extend the advantages of 
simple inhibition to distributed representations by decoupling the competition 
from the activation vector. In particular, we use neural plasticity - the derivative 
of a logistic activation function - as a medium for competition. 

Plasticity is low for both high and low activation values but high for intermediate 
ones (Figure 1); distributed patterns of activity may therefore have localized plastic­
ity. If competition is controlled by plasticity then, simple competitive mechanisms 
will constrain us to localized plasticity but allow representations with distributed 
activity. 

The next section reintroduces the binary information gain optimization (BINGO) 
algorithm for a single node; we then discuss how plasticity-mediated competition 
improves upon the decorrelation mechanism used in our original extension to 
multiple nodes. Finally, we establish a close relationship between the plasticity 
and the entropy of a logistiC node that provides an intuitive interpretation of 
plasticity-mediated competitive learning in this context. 
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2 BINARY INFORMATION GAIN OPTIMIZATION 

In (Schraudolph and Sejnowski, 1993), we proposed an unsupervised learning rule 
that uses logistic nodes to seek out binary features in its input. The output 

1 
z = f(y), where f(y) = 1 + e-Y and y = tV · x (1) 

of each node is interpreted stochastically as the probability that a given feature is 
present. We then search for informative directions in weight space by maximizing 
the information gained about an unknown binary feature through observation of 
z. This binary infonnation gain is given by 

D.H(z) = H(Z) - H(z) , (2) 

where H(z) is the entropy of a binary random variable with probability z, and z 
is a prediction of z based on prior knowledge. Gradient ascent in this objective 
results in the learning rule 

D.w <X J'(y) . (y - fI) . x, (3) 

where fI is a prediction of y. In the simplest case, fI is an empirical average (y) of past 
activity, computed either over batches of input data or by means of an exponential 
trace; this amounts to a nonlinear version of the covariance rule (Sejnowski, 1977). 

Using just the average as prediction introduces a strong preference for splitting the 
data into two equal-sized clusters. While such a bias is appropriate in the initial 
phase of learning, it fails to take the nonlinear nature of f into account. In order 
to discount data in the saturated regions of the logistic function appropriately, we 
weigh the average by the node's plasticity J'(y): 

(y . f'(y)) fI = --'-'---'--'-'--'-'--
(f'(y)) + C , 

(4) 

where c is a very small positive constant introduced to ensure numerical stability 
for large values of y. Now the bias for splitting the data evenly is gradually relaxed 
as the network's weights grow and data begins to fall into saturated regions of f. 

3 PLASTICITY-MEDIATED COMPETITION 

For multiple nodes the original BINGO algorithm used a decorrelating predictor 
as the competitive mechanism: 

g = y + (Qg - 2I)(y - (y)) , (5) 

where Qg is the autocorrelation matrix of y, and I the identity matrix. Note that 
Qg is computationally expensive to maintain; in connectionist implementations it 
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Figure 2: The "three cigars" problem. Each plot shows the pre-image of zero net 
. input, superimposed on a scatter plot of the data set, in input space. The two 
flanking lines delineate the "plastic region" where the logistic is not saturated, 
providing an indication of weight vector size. Left, two-node BINGO network 
using decorrelation (Equations 3 & 5) fails to separate the three data clusters. Right, 
same network using plasticity-mediated competition (Equations 4 & 6) succeeds. 

is often approximated by lateral anti-Hebbian connections whose adaptation must 
occur on a faster time scale than that of the feedforward weights (Equation 3) for 
reasons of stability (Leen, 1991). In practice this means that learning is slowed 
significantly. 

In addition, decorrelation can be inappropriate when nonlinear objectives are op­
timized - in our case, two prominent binary features may well be correlated. 
Consider the "three cigars" problem illustrated in Figure 2: the decorrelating pre­
dictor (left) forces the two nodes into a near-orthogonal arrangement, interfering 
with their ability to detect the parallel gaps separating the data clusters. 

For our purposes, decorrelation is thus too strong a constraint on the discriminants: 
all we require is that the discovered features be distinct. We achieve this by reverting 
to the simple predictor of Equation 4 while adding a global, plasticity-mediated 
excitation l factor to the weight update: 

~Wi ex: f'(Yi) . (Yi - 1li) . X · L f'(Yj) 
j 

(6) 

As Figure 2 (right) illustrates, this arrangement solves the "three cigars" prob­
lem. In the high-dimensional environment of hand-written digit recognition, this 
algorithm discovers a set of distributed binary features that preserve most of the 
information needed to classify the digits, even though the network was never given 
any class labels (Figure 3). 

1 The interaction is excitatory rather than inhibitory since a node's plasticity is inversely 
correlated with the magnitude of its net input. 
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Figure 3: Weights found by a four-node network running the improved BINGO 
algorithm (Equations 4 & 6) on a set of 1200 handwritten digits due to (Guyon et aI., 
1989). Although the network is unsupervised, its four-bit output conveys most of 
the information necessary to classify the digits. 

4 PLASTICITY AND BINARY ENTROPY 

It is possible to establish a relationship between the plasticity /' of a logistiC node 
and its entropy that provides an intuitive account of plasticity-mediated competi­
tion as applied to BINGO. Consider the binary entropy 

H(z) = - z logz - (1 - z) log(l - z) (7) 

A well-known quadratic approximation is 

H(z) = 8e- 1 z (1 - z) ~ H(z) (8) 

Now observe that the plasticity of a logistic node 

!'(Y)=:Y l+le_y =, .. =z(l-z) (9) 

is in fact proportional to H(z) - that is, a logistic node's plasticity is in effect 
a convenient quadratic approximation to its binary output entropy. The overall 
entropy in a layer of such nodes equals the sum of individual entropies less their 
redundancy: 

H(z) = L H(zj) - R(Z) 
j 

The plasticity-mediated excitation factor in Equation 6 

j j 

(10) 

(11) 

is thus proportional to an approximate upper bound on the entropy of the layer, 
which in turn indicates how much more information remains to be gained by 
learning from a particular input. In the context of BINGO, plasticity-mediated 
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competition thus scales weight changes according to a measure of the network's 
ignorance: the less it is able to identify a given input in terms of its set of binary 
features, the more it tries to learn doing so. 

5 CONCLUSION 

By using the derivative of a logistic activation function as a medium for competitive 
interaction, we were able to obtain differentiated, fully distributed representations 
without resorting to computationally expensive decorrelation schemes. We have 
demonstrated this plasticity-mediated competition approach on the BINGO feature 
extraction algorithm, which is significantly improved by it. A close relationship 
between the plasticity of a logistic node and its binary output entropy provides an 
intuitive interpretation of this unusual form of competition. 

Our general approach of using a nonmonotonic function of activity - rather than 
activity itself - to control competitive interactions may prove valuable in other 
learning schemes, in particular those that seek distributed rather than local repre­
sentations. 
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