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Abstract 

The performance of on-line algorithms for learning dichotomies is studied. In on-line learn­
ing, the number of examples P is equivalent to the learning time, since each example is 
presented only once. The learning curve, or generalization error as a function of P, depends 
on the schedule at which the learning rate is lowered. For a target that is a perceptron rule, 
the learning curve of the perceptron algorithm can decrease as fast as p-1 , if the sched­
ule is optimized. If the target is not realizable by a perceptron, the perceptron algorithm 
does not generally converge to the solution with lowest generalization error. For the case 
of unrealizability due to a simple output noise, we propose a new on-line algorithm for a 
perceptron yielding a learning curve that can approach the optimal generalization error as 
fast as p-l/2. We then generalize the perceptron algorithm to any class of thresholded 
smooth functions learning a target from that class. For "well-behaved" input distributions, 
if this algorithm converges to the optimal solution, its learning curve can decrease as fast 
as p-l. 

1 Introduction 

Much work on the theory of learning from examples has focused on batch learning, in which the learner is 
given all examples simultaneously, or is allowed to cycle through them repeatedly. In many situations, it is 
more natural to consider on-line learning paradigms, in which at each time step a new example is chosen. 
The examples are never recycled, and the learner is not allowed to simply store them (see e.g, Heskes, 
1991; Hansen, 1993; Radons, 1993). Stochastic approximation theory (Kushner, 1978) provides a framework 
for understanding of the local convergence properties of on-line learning of smooth functions. This paper 
addresses the problem of on-line learning of dichotomies, for which no similarly complete theory yet exists. 
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We begin with on-line learning of perceptron rules. Since its introduction in the early 60's, the perceptron 
algorithm has been used as a simple model of learning a binary classification rule. The algorithm has been 
proven to converge in finite time and to yield a half plane separating any set of linearly separable examples. 
The perceptron algorithm, however, is not efficient in the sense of distribution-free PAC learning (Valiant, 
1984), for one can construct input distributions that require an arbitrarily long convergence time. In a recent 
paper (Baum, 1990) Baum proved that the perceptron algorithm applied in an on-line mode, converges as 
p-I/3 when learning a half space under a uniform input distribution, where P is the number of presented 
examples drawn at random. For on-line learning P is also the number of time steps. Baum also generalized 
his result to any "non-malicious" distribution. Kabashima has found the same power law for learning a 
two-layer parity machine with non-overlapping inputs, using an on-line least action algorithm (Kabashima, 
1994). 

If efficiency is measured only by the number of examples used (disregarding time), these particular on-line 
algorithms are much worse than batch algorithms. Any batch algorithm which is able to correctly classify a 
given set of P examples will converge as p- I (Vapnik, 1982; Amari, 1992; Seung, 1992) . In this paper, we 
construct on-line algorithms that can actually achieve the same power law as batch algorithms, demonstrating 
that the results of Baum and Kabashima do not reflect a fundamental limitation of on-line learning. 

In Section 3, we study on-line algorithms for perceptron learning of a target rule that is not realizable by 
a perceptron. Here it is nontrivial to construct an algorithm that even converges to the optimal one, let 
alone to optimize the rate of convergence. For the special case of a target rule that is a percept ron corrupted 
by output noise this can be done. In Section 4, our results are generalized to dichotomies generated by 
thresholding smooth functions. In Section 5 we summarize the results. 

2 On-line learning of a perceptron rule 

We consider a half space rule generated by a normalized teacher perceptron Wo ERN, Wo' Wo = 1 such 
that any vector 5 E RN is given a label uo(5) = sgn(Wo ·5). We study the case of a Gaussian input 
distribution centered at zero with a unit variance in each direction in space: 

N 1 2 
P(5) = II _e-s, /2 

;=1 v'21r 
(1) 

Averages over this input distribution will be written with angle brackets (). A student percept ron W is 
trained by an on-line perceptron algorithm. At each time step, an input 5 E RN is drawn at random, 
according to distribution Eq. (1) and the student's output u(5) = sgn(W . 5) is calculated. The student is 
then updated according to the perceptron rule: 

W' = W + ~f(5;W)uo(5)5 (2) 

and is then normalized so that W . W = 1 at all times. The factor f(5; W) denotes the error of the student 
perceptron on the input 5: f = 1 if u(5)uo(5) = 1, and 0 otherwise. The learning rate 1/ is the magnitude 
of change of the weights at each time step. It is scaled by N to ensure that the change in the overlap 
R = W· Wo is of order lIN. Thus, a change of 0(1) occurs only after presentation of P = O(N) examples. 

The performance of the student is measured by the generalization error, defined as the probability of dis­
agreement between the student and the teacher on an arbitrary input fg = (f(5; W»). In the present case, 
fg is 

cos- I R 
fg = --7r-' (3) 

Although for simplicity we analyze below the performance of the perceptron rule (2) only for large N, 
our results apply to finite N as well. Multiplying Eq. (2) by Wo after incorporation of the normalization 
operation and averaging with respect to the input distribution (1), yields the following differential equation 
for R(a) where a = PIN, 

(4) 
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Here terms of order J17/N have been neglected. 

The evolution of the overlap R, and thus of the generalization error, depends on the schedule at which the 
learning rate 17 decreases. We consider two cases, a constant 17 and a time-dependent 17. 

Constant learning rate: When 17 is held fixed, Eq. (4) has a stable fixed point at R < 1, and hence eg 

converges to an '7-dependent nonzero value eoo ('7). For '7 «: 1, 1- Roo ('7) oc '72 and eg oc VI - R is therefore 
proportional to '7, 

eoo ('7) = '7/..f2i3 . (5) 

The convergence to this value is exponential in 0, eg(o) - eoo ('7) '" exp(-'7o/$). 

Time-dependent learning rate: Convergence to eg = 0 can be achieved if '7 decreases slowly enough with 
o. We study the limiting behaviour of the system for '7 which is decreasing with time as '7 = (7]0$) o-z. 

z > 1. In this case the rate is reduced too fast before a sufficient number of examples have been seen. This 
results in R which does not converge to 1 but instead to a smaller value that depends on its initial value. 

z < 1. The system follows the change in '7 adiabatically. Hence, to first order in 0-1 , eg(o) = eoo ('7(o». 
Thus, eg converges to zero with an asymptotic rate eg(o) '" o-z. 

z = 1. The behaviour of the system depends on the prefactor '70: 

eg (1 '7~)1 
71"'70- 10 

y'logo 
a 

A 
0'1<> 

'70> 1 

7]0 = 1 

7]0 < 1 

(6) 

where A depends on the initial condition. Thus the optimal asymptotic change of '7 is 2..;21i / 0, in which case 
the error will behave asymptotically as eg(o) '" 1.27/0. This is not far from the batch asymptotic (Seung, 
1992) eg(o) '" 0.625/0. We have confirmed these results by numerical simulation of the algorithm Eq. (2). 
Figure 1 presents the results of the optimalleaming schedule, i.e., '7 = 2..;21i/o. The numerical results are 
in excellent agreement with the prediction eg(o) = 1.27/0 for the asymptotic behavior. Finally, we note 
that our analysis of the time-dependent case is similar to that of Kabashima and Shinomoto for a different 
on-line learning problem (Kabashima, 1993). 

3 On-line learning of a percept ron with output noise 

In the case discussed above, the task can be fully realized by a perceptron, i.e., there is a perceptron W 
such that eg = O. In more realistic situations a percept ron will only provide an approximation of the target 
function, so that the minimal value of eg is greater than zero. These cases are called unrealizable tasks. A 
drawback of the above on-line algorithm is that, for a general unrealizable task, it does not converge to 
the optimal perceptron, i.e., it does not approach the minimum of ego To illustrate this fact we consider a 
perceptron rule corrupted by output noise. The label of an input S is O"o(S), where O"o(S) = sgn(Wo . S) 
with probability 1 - p, and - sgn(Wo . S) with probability p. We assume 0 $ p $ 1/2. For reasons which 
will become clear later, the input distribution is taken as a Gaussian centered at U 

N 
P(S) = n _1_e-(S,-u.)'/2 (7) 

;=1 ..;21i 
In this case eg is given by 

eg =p+ (l- q DYH(~)+l°O DYH(~»). 
-00 1 - R _q 1 - R 

(8) 

where qo = U . W 0 denotes the overlap between the center of the distribution and the teacher perceptron, 
and q = U . W is the overlap between the center of the distribution and W. The integrals in Eq. (8) are 
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with respect to a Gaussian measure Dy = exp(-y2/2)/.J21i and H(x) = J.,oo Dy. Note that the optimal 
perceptron is the teacher W = Wo i.e., R = 1, q = 110, which yields the minimal error fmin = p. 

First, we consider training with the normalized perceptron rule (2). In this case, we obtain differential 
equations for two variables: R and q. Solving these equations we find that in general, W converges to a 
vector with a direction which is in the plane of Wo and U and is does not point in the direction of Wo even 
in the limit of,., -+ O. Here we present the result for the limit of,., -+ 0 and small noise level, i.e., p ¢: 1. In 
this case, we obtain for foo ('" = 0) 

foo(O) = P + p (1 - 2H(qo»~ + O(p2) 
1+(u2-q~) 

(9) 

where u = lUI is the magnitude of the center of the input distribution. For p = 0, the only solution is 
R = 1 and q = qo, in agreement with the previous results. For p > 0 the optimal solution is retrieved only 
in the following special cases: (i) the input distribution is isotropic, i.e., qo = u = OJ (ii) when U is parallel 
to W o, i.e., u = qoj and (iii) when U is orthogonal to W o, i.e., qo = O. This holds also for large value of 
p. In these special cases, the symmetry of the input distribution relative to the teacher vector, guarantees 
that the deviations from W = Wo incurred by the inputs that come with the wrong label cancel each other 
on average. According to Eq. (9), for other directions of U, fg is above the optimal value. Note that the 
additional term in fg is of the same order of magnitude (O(P» as the minimal error. 

In the following we suggest a modified on-line algorithm for learning a perceptron rule with output noise. 
The student weights are changed according to 

W' = W + ~f(S; W)ITo(S)(S - T(S» (10) 

followed by a normalization of W. This algorithm differs from the perceptron algorithm in that the change in 
W is not proportional to the present input, but to a shifted vector. The shifting vector T(S), is determined 
by the requirement that the teacher Wo will be a fixed point of the algorithm in the limit of,., -+ O. This is 
equivalent to the condition 

(fo(S)lTo(S)(S - T(S») = 0 (11) 
where foeS) is the error function for S when W = Woo This condition does not determine T uniquely. A 
simple choice is one for which T is independent of S. This leads to 

T = (sgn(Wo' S)S) = (IToS) 
(sgn(Wo . S» (ITo) 

(12) 

where we used the fact that for any S, fo(S)lTo(S) equals - sgn(Wo . S) with probability p, and zero with 
probability (1 - p). This uniform shift is possible only when (O'o) ~ 0, namely when the average frequencies 
of +1 and -1 labels are not equal. If this is not the case, one has to choose nonuniform forms of T(S) . 
Note that in general T has to be learned so that Eq. (10) has to be supplemented by appropriate equations 
for changing T. In the case of Eq. (12), one can easily learn separately the numerator and denominator by 
running averages of O'oS and 0'0, respectively. We have studied analytically the above algorithm for the case 
of the Gaussian input distribution Eq. (7), in the limit of large N. The shifting vector is given by 

T = U + Wo ~ exp( -q~/2) 
V 1T 1 - 2H(qo) 

(13) 

The differential equations for the overlaps R and q in the neighborhood of the point R = 1 and q = qo are, 

daR 
da 
doq 
da 

(14) 

where oR = 1 - R and oq = qo - q. In the limit,., -+ 0, R = 1 and q = qo is indeed a stable fixed point of 
the algorithm, so that the student converges to the optimal perceptron W o, and hence the feneralization 
error converges to its minimal value fmin = p. Since, unlike Eq. (4), the coefficient of the,., term in Eq. 
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(14) is constant, c5Roo(1]) <X 1], for small fixed 1], and not to 1]2. Thus, in this case, the generalization error 
approaches, in the limit a -t 00, the value 

exp(-qa/4) 
t:oo (1]) :;;: p +.,fiiP (271"3)1/4 (15) 

For a time-dependent 1], the convergence to the optimal weights depends on the choice of 1](n), as in the 

case of the noiseless perceptron rule. For 1] :;;: (1]0 J1i72 exp( q5 12) ) a-' , with z ~ 1, the error converges to 

p. For z < 1, to first order in 1/a, t:g(a) :;;: t:oo (1](a)) , yielding 

t:g(a) - p ~ a-·/2 • 

When z :;;: 1, the rate of convergence depends on the value of 1]0. 

( ) { a-l /2 1] > 1 
t:g a - p ~ a-'1oj:~, ~ < 1 

and logarithmic corrections to a-1/ 2 for 1]0 :;;: 1. Thus, the optimal rate of convergence is 

t: (a) _ p ~ f2P 
9 V~ 

which is achieved for 1]0 = 2. 

(16) 

(17) 

(18) 

We have tested successfully this algorithm by simulations of learning a perceptron rule with output noise 
with several input distributions, including the Gaussian, of Eq. (7). Figure 2 presents the generalization 
error as a function of a for the Gaussian distribution, with p = 0.2 , and we have chosen 1]0 = 2. The error 
converges to the optimal value 0.2 as a- I / 2 in agreement with the theory. For comparison the result of the 
usual perceptron algorithm is also presented. This algorithm converges to t:g ~ 0.32, clearly larger than the 
optimal value. 

4 On-line learning of thresholded smooth functions 

Our results for the realizable perceptron can be extended to a more general class of dichotomies, namely 
thresholded smooth functions. They are defined as dichotomies of the form 

O"(S; W) = sgn(f(Sj W)) (19) 

where 1 is a differentiable function of a set of parameters, denoted by W, and S is the input vector. We 
consider here the case of a realizable task, where the examples are given with labels 0"0 corresponding to a 
target machine W 0 which is in the W space. For this task we propose the following generalization of the 
perceptron rule (2) 

W' = W + 1]t:(Sj W)O"o(S)V I(S; W) (20) 

where V denotes a gradient w.r.t. W. Then, as we argue below, the vector Wo is a stable fixed point in the 
limit of 1] -t O. Furthermore, for constant small 1] the residual error scales as t:oo <X 1]. For 1] ~ a-' , z < 1, 
t:g(a) ~ t:oo(1](a)) '""' a-·. 

To show this, let us consider for simplicity the one-dimensional case, w' = w + 1]g(w, s), where 

81 
g(w,s) = 9(-I(w,s)l(wo,s))sgn(f(wo,s))8w . (21) 

This equation can be converted into a Markov equation for the probability distribution, P(w,n) (Van Kam­
pen, 1981) 

P(w,n + 1):;;: J dw'W(w'lw)P(w' ,n) (22) 

where W(wlw') =< c5(w' - w -1]g(w, s)) > is the transition rate from w to w'. In the limit of small fixed 1], 
the equilibrium distribution, Poo, can be shown to have the following scaling form, 

1 
Poo(w;1]):;;: -F(c5wl1]) (23) 

1] 
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where ow = w - Wo and F(x) obeys the following difference equation 

LF(x) == L 9«(f~ + O"x)J~)I(f~ + O"x)IF(x + o"/~) -lxIF(x) = 0 (24) 
C1=±1 

where J6 is the value of the gradient aJ(wo, s)law at the decision boundary of J(wo, s), namely at the point 
s obeying J(wo,s) = O. Note that since we are interested in normalizable solutions of Eq. (24), F(x) has to 
vanish for for all x > 1161 . This result is valid provided the input distribution is smooth and nonvanishing 
near the decision boundary. Furthermore, aJ law at Wo may not vanish on the decision boundary. Under 
the same conditions, it can be shown that the error is homogeneous in ow with degree 1, hence it should 
scale linearly with "I, i.e., 1':00 oc "I. It should be noted that, unlike other on-line learning problems (Heskes, 
1991; Hansen, 1993; Radons, 1993), the equilibrium distribution is our case is not Gaussian. 

For a time-dependent "I of the form "I = TJon- z , z < I, pew, n) at long times is of the form 

(25) 

where F is the stationary distribution, given by Eq. (24) and the coefficient of the correction, G, solves the 
inhomogeneous equation 

dF • 
zx dx + zF(x) = TJoLG(x) (26) 

where the linear operator L is defined in Eq. (24). Thus, to leading order in inverse time, the system 
follows adiabatically the finite-TJ stationary distribution, yielding I':g(n) which vanishes asymptotically as 
I':g(n) oc TJ(n) ~ n- z . The optimal schedule is obtained for z = 1. In this case, P(w,n) = "1-1 (n)F(ow/TJ(n)) 
where F(x) solves the homogeneous equation 

dF • 
zx dx + zF(x) = TJoLF(x) (27) 

For sufficiently large "10, this equation has a solution, implying that I':g oc n-1 

Similarly, the results of Section 3 can also be extended to the case of thresholded- smooth functions with 
a probability p of an error due to isotropic output noise. In this case, the optimal choice is again "I oc n- I 

yielding I':g -p Rl ,;ri. It should be noted that for this case, the probability distribution for small "I does reduce 
to a Gaussian distribution in owl,;ri. Using a multidimensional Markov equation, it is straightforward to 
extend these results to higher dimensions. The small "I limit yields equations similar to Eqs. (24-26), that 
involve integration over the decision boundary of J(W, S). 

5 Summary and Discussion 

We have found that the perceptron rule (2) with normalization can lead to a variety of learning curves, 
depending on the schedule at which the learning rate is decreased. The optimal schedule leads to an inverse 
power law learning curve, I':g ~ 0-1 . Baum's results (Baum, 1990) of a non-normalized perceptron with a 
constant learning rate can be viewed as a special case of the above analysis. In the non-normalized perceptron 
algorithm, the magnitude of the student's weights grow with 0 as IWI ~ 0 1/ 3 . The time evolution of the 
overlap R, and thus of the generalization error is governed by the effective learning rate TJe/f = T//IWlleading 
via Eq. (6) to the result I':g ~ 0-1/ 3 . Similar results apply to the two-layer parity machine studied in 
(Kabashima, 1994). 

Our analysis, leading to the equations of motion (4) and (14), was based on the limit of large N and P, such 
that 0 = PIN remains finite. We would like to stress however, that this limit is only necessary in deriving 
the full form of the learning curve, i.e., R(o) for all o. On the other hand, our results for the large P 
asymptote of the learning curve for smailT/ are valid for finite N as well, as implied by the general treatment 
of the previous section. 

Unrealizable percept ron rules present a more complicated problem. We have presented here a modified 
perceptron algorithm that converges to the optimal solution in the special case of an isotropic output noise. 
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In this case, the convergence to the optimal error is as 01-1/ 2 . This is the same power law as obtained in 
the standard sample complexity upper bounds (Vapnik, 1982) and in the approximate replica symmetric 
calculations (Seung, 1992) for batch learning of unrealizable rules. It should be stressed however, that the 
success of the modified algorithm in the case of an output noise depends on the fact that the errors made 
by the optimal solution are uncorrelated with the input. Thus, finding an on-line algorithm that can cope 
with other types of unrealizability remains an important problem. 

The learning algorithms for the perceptron rule, without and with output noise, can be generalized to learning 
thresholded smooth functions, assuming certain reasonable properties of the input distribution are present, 
as shown in Section 4. The dependence of the learning curve on the learning rate schedule remains roughly 
the same as in the percept ron case. This implies that on-line learning of realizable dichotomies, with possible 
output noise, can achieve the same power laws in the number of examples that is typical of batch learning 
of such rules. Furthermore, the on-line formulation possesses the theoretical virtues of addressing time as 
well as sample complexity, so that the same power laws imply the polynomial relationship between the time 
and the achieved error level. The above conclusions assume that the equilibrium state at small learning 
rates is unique, which in general is not the case. The issue of overcoming local minima in on-line learning 
is a difficult problem (Heskes, 1992) Finally, the theoretical results for on-line learning has the important 
advantage of not requiring the use of the often problematic replica formalism. 
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Figure 1: Asymptotic performance of a realizable perceptron. Simulation results for 110 :;;: 2 and N :;;: 50 
(solid curve) are compared with the theoretical prediction f g :;;: 1.271a (dashed curve). 
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Figure 2: Simulation results for on-line learning of a perceptron with output noise. Here 1Jo :;;: 2, P :;;: 0.2, 
N :;;: 250, U = 4, and qo :;;: -1.95. The regular percept ron learning (dashed curve) is compared with the 
modified algorithm (solid curve). The dashed line shows the theoretical prediction Eq. (18) 


