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Abstract 

This paper presents results from the first use of neural networks 
for the real-time feedback control of high temperature plasmas in 
a tokamak fusion experiment. The tokamak is currently the prin­
cipal experimental device for research into the magnetic confine­
ment approach to controlled fusion. In the tokamak, hydrogen 
plasmas, at temperatures of up to 100 Million K, are confined 
by strong magnetic fields. Accurate control of the position and 
shape of the plasma boundary requires real-time feedback control 
of the magnetic field structure on a time-scale of a few tens of mi­
croseconds. Software simulations have demonstrated that a neural 
network approach can give significantly better performance than 
the linear technique currently used on most tokamak experiments. 
The practical application of the neural network approach requires 
high-speed hardware, for which a fully parallel implementation of 
the multilayer perceptron, using a hybrid of digital and analogue 
technology, has been developed. 
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1 INTRODUCTION 

Fusion of the nuclei of hydrogen provides the energy source which powers the sun. 
It also offers the possibility of a practically limitless terrestrial source of energy. 
However, the harnessing of this power has proved to be a highly challenging prob­
lem. One of the most promising approaches is based on magnetic confinement of a 
high temperature (107 - 108 Kelvin) plasma in a device called a tokamak (from the 
Russian for 'toroidal magnetic chamber') as illustrated schematically in Figure 1. 
At these temperatures the highly ionized plasma is an excellent electrical conduc­
tor, and can be confined and shaped by strong magnetic fields. Early tokamaks 
had plasmas with circular cross-sections, for which feedback control of the plasma 
position and shape is relatively straightforward. However, recent tokamaks, such as 
the COMPASS experiment at Culham Laboratory, as well as most next-generation 
tokamaks, are designed to produce plasmas whose cross-sections are strongly non­
circular. Figure 2 illustrates some of the plasma shapes which COMPASS is de­
signed to explore. These novel cross-sections provide substantially improved energy 
confinement properties and thereby significantly enhance the performance of the 
tokamak. 

z 

R 

Figure 1: Schematic cross-section of a tokamak experiment show­
ing the toroidal vacuum vessel (outer D-shaped curve) and plasma 
(shown shaded). Also shown are the radial (R) and vertical (Z) co­
ordinates. To a good approximation, the tokamak can be regarded 
as axisymmetric about the Z-axis, and so the plasma boundary can 
be described by its cross-sectional shape at one particular toroidal 
location. 

Unlike circular cross-section plasmas, highly non-circular shapes are more difficult to 
produce and to control accurately, since currents through several control coils must 
be adjusted simultaneously. Furthermore, during a typical plasma pulse, the shape 
must evolve, usually from some initial near-circular shape. Due to uncertainties 
in the current and pressure distributions within the plasma, the desired accuracy 
for plasma control can only be achieved by making real-time measurements of the 
position and shape of the boundary, and using error feedback to adjust the currents 
in the control coils. 

The physics of the plasma equilibrium is determined by force balance between the 
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Figure 2: Cross-sections of the COMPASS vacuum vessel showing 
some examples of potential plasma shapes. The solid curve is the 
boundary of the vacuum vessel, and the plasma is shown by the 
shaded regions. 
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thermal pressure of the plasma and the pressure of the magnetic field, and is rel­
atively well understood. Particular plasma configurations are described in terms 
of solutions of a non-linear partial differential equation called the Grad-Shafranov 
(GS) equation. Due to the non-linear nature of this equation, a general analytic 
solution is not possible. However, the GS equation can be solved by iterative nu­
merical methods, with boundary conditions determined by currents flowing in the 
external control coils which surround the vacuum vessel. On the tokamak itself it 
is changes in these currents which are used to alter the position and cross-sectional 
shape of the plasma. Numerical solution of the GS equation represents the stan­
dard technique for post-shot analysis of the plasma, and is also the method used 
to generate the training dataset for the neural network, as described in the next 
section. However , this approach is computationally very intensive and is therefore 
unsuitable for feedback control purposes. 

For real-time control it is necessary to have a fast (typically:::; 50J.lsec.) determi­
nation of the plasma boundary shape. This information can be extracted from a 
variety of diagnostic systems, the most important being local magnetic measure­
ments taken at a number of points around the perimeter of the vacuum vessel. 
Most tokamaks have several tens or hundreds of small pick up coils located at care­
fully optimized points around the torus for this purpose. We shall represent these 
magnetic signals collectively as a vector m . 

For a large class of equilibria, the plasma boundary can be reasonably well repre­
sented in terms of a simple parameterization, governed by an angle-like variable B, 
given by 

R(B) 
Z(B) 

Ro + a cos(B + 8 sinB) 

Zo + a/\,sinB 

where we have defined the following parameters 

(1) 
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Ro radial distance of the plasma center from the major axis of the torus, 
Zo vertical distance of the plasma center from the torus midplane, 
a minor radius measured in the plane Z = Zo, 
K elongation, 
6 triangularity. 

We denote these parameters collectively by Yk. The basic problem which has to be 
addressed, therefore, is to find a representation for the (non-linear) mapping from 
the magnetic signals m to the values of the geometrical parameters Yk, which can 
be implemented in suitable hardware for real-time control. 

The conventional approach presently in use on many tokamaks involves approxi­
mating the mapping between the measured magnetic signals and the geometrical 
parameters by a single linear transformation. However, the intrinsic non-linearity 
of the mappings suggests that a representation in terms of feedforward neural net­
works should give significantly improved results (Lister and Schnurrenberger, 1991; 
Bishop et a/., 1992; Lagin et at., 1993). Figure 3 shows a block diagram of the 
control loop for the neural network approach to tokamak equilibrium control. 

Neural 
Network 

Figure 3: Block diagram of the control loop used for real-time 
feedback control of plasma position and shape. 

2 SOFTWARE SIMULATION RESULTS 

The dataset for training and testing the network was generated by numerical so­
lution of the GS equation using a free-boundary equilibrium code. The data base 
currently consists of over 2,000 equilibria spanning the wide range of plasma po­
sitions and shapes available in COMPASS. Each equilibrium configuration takes 
several minutes to generate on a fast workstation. The boundary of each configu­
ration is then fitted using the form in equation 1, so that the equilibria are labelled 
with the appropriate values of the shape parameters. Of the 120 magnetic signals 
available on COMPASS which could be used to provide inputs to the network, a 
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subset of 16 has been chosen using sequential forward selection based on a linear 
representation for the mapping (discussed below) . 

It is important to note that the transformation from magnetic signals to flux surface 
parameters involves an exact linear invariance. This follows from the fact that, if all 
of the currents are scaled by a constant factor, then the magnetic fields will be scaled 
by this factor , and the geometry of the plasma boundary will be unchanged. It is 
important to take advantage of this prior knowledge and to build it into the network 
structure, rather than force the network to learn it by example. We therefore 
normalize the vector m of input signals to the network by dividing by a quantity 
proportional to the total plasma current. Note that this normalization has to be 
incorporated into the hardware implementation of the network, as will be discussed 
in Section 3. 
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Figure 4: Plots of the values from the test set versus the values 
predicted by the linear mapping for the 3 equilibrium parameters, 
together with the corresponding plots for a neural network with 4 
hidden units. 

.2 

.2 

The results presented in this paper are based on a multilayer perceptron architecture 
having a single layer of hidden units with 'tanh' activation functions , and linear 
output units. Networks are trained by minimization of a sum-of-squares error using 
a standard conjugate gradients optimization algorithm, and the number of hidden 
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units is optimized by measuring performance with respect to an independent test 
set. Results from the neural network mapping are compared with those from the 
optimal linear mapping, that is the single linear transformation which minimizes 
the same sum-of-squares error as is used in the neural network training algorithm, 
as this represents the method currently used on a number of present day tokamaks . 

Initial results were obtained on networks having 3 output units, corresponding to 
the values of vertical position ZQ, major radius RQ, and elongation K; these being 
parameters which are of interest for real-time feedback control. The smallest nor­
malized test set error of 11.7 is obtained from the network having 16 hidden units. 
By comparison, the optimal linear mapping gave a normalized test set error of 18.3. 
This represents a reduction in error of about 30% in going from the linear mapping 
to the neural network. Such an improvement, in the context of this application , is 
very significant. 

For the experiments on real-time feedback control described in Section 4 the cur­
rently available hardware only permitted networks having 4 hidden units, and so we 
consider the results from this network in more detail. Figure 4 shows plots of the 
network predictions for various parameters versus the corresponding values from 
the test set portion of the database. Analogous plots for the optimal linear map 
predictions versus the database values are also shown. Comparison of the corre­
sponding figures shows the improved predictive capability of the neural network, 
even for this sub-optimal network topology. 

3 HARDWARE IMPLEMENTATION 

The hardware implementation of the neural network must have a bandwidth of 2: 
20 kHz in order to cope with the fast timescales of the plasma evolution. It must 
also have an output precision of at least (the the analogue equivalent of) 8 bits in 
order to ensure that the final accuracy which is attainable will not be limited by the 
hardware system. We have chosen to develop a fully parallel custom implementation 
of the multilayer perceptron, based on analogue signal paths with digitally stored 
synaptic weights (Bishop et al., 1993). A VME-based modular construction has 
been chosen as this allows flexibility in changing the network architecture, ease of 
loading network weights, and simplicity of data acquisition. Three separate types 
of card have been developed as follows: 

• Combined 16-input buffer and signal normalizer. 
This provides an analogue hardware implementation of the input normal­
ization described earlier. 

• 16 x 4 matrix multiplier 
The synaptic weights are produced using 12 bit frequency-compensated 
multiplying DACs (digital to analogue converters) which can be configured 
to allow 4-quadrant multiplication of analogue signals by a digitally stored 
number. 

• 4-channel sigmoid module 
There are many ways to produce a sigmoidal non-linearity, and we have 
opted for a solution using two transistors configured as along-tailed-pair, 
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to generate a 'tanh ' sigmoidal transfer characteristic. The principal draw­
back of such an approach is the strong temperature sensitivity due to the 
appearance of temperature in the denominator of the exponential transistor 
transfer characteristic. An elegant solution to this problem has been found 
by exploiting a chip containing 5 transistors in close thermal contact. Two 
of the transistors form the long-tailed pair, one of the transistors is used 
as a heat source, and the remaining two transistors are used to measure 
temperature. External circuitry provides active thermal feedback control, 
and stability to changes in ambient temperature over the range O°C to 50°C 
is found to be well within the acceptable range. 

The complete network is constructed by mounting the appropriate combination 
of cards in a VME rack and configuring the network topology using front panel 
interconnections. The system includes extensive diagnostics, allowing voltages at 
all key points within the network to be monitored as a function of time via a series 
of multiplexed output channels. 

4 RESULTS FROM REAL-TIME FEEDBACK CONTROL 

Figure 5 shows the first results obtained from real-time control of the plasma in 
the COMPASS tokamak using neural networks. The evolution of the plasma elon­
gation, under the control of the neural network, is plotted as a function of time 
during a plasma pulse. Here the desired elongation has been preprogrammed to 
follow a series of steps as a function of time. The remaining 2 network outputs 
(radial position Ro and vertical position Zo) were digitized for post-shot diagnosis , 
but were not used for real-time control. The solid curve shows the value of elonga­
tion given by the corresponding network output, and the dashed curve shows the 
post-shot reconstruction of the elongation obtained from a simple 'filament' code, 
which gives relatively rapid post-shot plasma shape reconstruction but with limited 
accuracy. The circles denote the elongation values given by the much more accurate 
reconstructions obtained from the full equilibrium code. The graph clearly shows 
the network generating the required elongation signal in close agreement with the 
reconstructed values. The typical residual error is of order 0.07 on elongation values 
up to around 1.5. Part of this error is attributable to residual offset in the integra­
tors used to extract magnetic field information from the pick-up coils, and this is 
currently being corrected through modifications to the integrator design. An addi­
tional contribution to the error arises from the restricted number of hidden units 
available with the initial hardware configuration. While these results represent the 
first obtained using closed loop control, it is clear from earlier software modelling of 
larger network architectures (such as 32- 16-4) that residual errors of order a few % 
should be attainable. The implementation of such larger networks is being persued, 
following the successes with the smaller system. 
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Figure 5: Plot of the plasma elongation K. as a function of time 
during shot no. 9576 on the COMPASS tokamak, during which the 
elongation was being controlled in real-time by the neural network. 
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Abstract 

A novel two-terminal device, consisting of a thin lOooA layer of p+ 
a-Si:H sandwiched between Vanadium and Chromium electrodes, 
exhibits a non-volatile, analogue memory action. This device stores 
synaptic weights in an ANN chip, replacing the capacitor previously 
used for dynamic weight storage. Two different synapse designs are 
discussed and results are presented. 

1 INTRODUCTION 

Analogue hardware implementations of neural networks have hitherto been ham­
pered by the lack of a straightforward (local) analogue memory capability. The 
ideal storage mechanism would be compact, non-volatile, easily reprogrammable, 
and would not interfere with the normal silicon chip fabrication process. 

Techniques which have been used to date include resistors (these are not generally 
reprogrammable, and suffer from being large and difficult to fabricate with any accu­
racy), dynamic capacitive storage [4] (this is compact, reprogrammable and simple, 
but implies an increase in system complexity, arising from off-chip refresh circuitry), 
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EEPROM ("floating gate") memory [5] (which is compact, reprogrammable, and 
non-volatile, but is slow, and cannot be reprogrammed in situ), and local digital 
storage (which is non-volatile, easily programmable and simple, but consumes area 
horribly). 

Amorphous silicon has been used for synaptic weight storage [1, 2], but only as 
either a high-resistance fixed weight medium or a binary memory. 

In this paper, we demonstrate that novel amorphous silicon memory devices can be 
incorporated into standard CMOS synapse circuits, to provide an analogue weight 
storage mechanism which is compact, non-volatile, easily reprogrammable, and sim­
ple to implement. 

2 a-Si:H MEMORY DEVICES 

The a-Si:H analogue memory device [3] comprises a lOooA thick layer of amorphous 
silicon (p+ a-Si:H) sandwiched between Vanadium and Chromium electrodes. 

The a-Si device takes the form of a two-terminal, programmable resistor. It is an 
"add-on" to a conventional CMOS process, and does not demand that the normal 
CMOS fabrication cycle be disrupted. The a-Si device sits on top of the completed 
chip circuitry, making contact with the CMOS arithmetic elements via holes cut in 
the protective passivation layer, as shown in Figure 1. 

CMOS Passivation 

Figure 1: The construction of a-Si:H Devices on a CMOS chip 

After fabrication a number of electronic procedures must be performed in order to 
program the device to a given resistance state. 

Programming, and Pre-Programming Procedures 

Before the a-Si device is usable, the following steps must be carried out: 

• Forming: This is a once-only process, applied to the a-Si device in its 
"virgin" state, where it has a resistance of several MO. A series of 300ns 
pulses, increasing in amplitude from 5v to 14v, is applied to the device 
electrodes. This creates a vertical conducting channel or filament whose 
approximate resistance is 1KO. This filament can then be programmed to 
a value in the range lKO to 1 MO . The details of the physical mechanisms 
are not yet fully established, but it is clear that conduction occurs through 
a narrow (sub-micron) conducting channel. 
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• Write: To decrease the device's resistance, negative "Write", pulses are 
applied. 

• Erase: To increase the device's resistance, positive" Erase" , pulses are ap­
plied. 

• Usage: Pulses below O.5v do not change the device resistance. The resis­
tance can therefore be utilised as a weight storage medium using a voltage 
of less than O.5v without causing reprogramming. 

Programming pulses, which range between 2v and 5v, are typically 120ns in du­
ration. Programming is therefore much faster than for other EEPROM (floating 
gate) devices used in the same context, which use a series of 100jls pulses to set the 
threshold voltage [5]. 

The following sections describe synapse circuits using the a-Si:H devices. These 
synapses use the reprogrammable a-Si:H resistor in the place of a storage capacitor 
or EEPROM cell. These new synapses were implemented on a chip referred to as 
ASiTEST2, consisting of five main test blocks, each comprising of four synapses 
connected to a single neuron. 

3 The EPSILON based synapse 

The first synapse to be designed used the a-Si:H resistor as a direct replacement for 
the storage capacitor used in the EPSILON [4] synapse. 

+Sv 

V .. t. Storage 1 I Original 

~:l: Capacitor 
O.5v 

><!: ~ E 30 ... <0-----------.,... __ 
Mirror Set a-Si => Vw EPSILON Synapse 

Neuron 
Circuitry 

Figure 2: The EPSILON Synapse with a-Si:H weight storage 

In the original EPSILON chip the weight voltage was stored as a voltage on a 
capacitor. In this new synapse design, shown in Figure 2, the a-Si:H resistance is 
set such that the voltage drop produced by Iset is equivalent to the original weight 
voltage, Vw, that was stored dynamically on the capacitor. 

A new, simpler, synapse, which can be operated from a single +5v supply, was also 
be included on the ASiTEST2 chip. 
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4 The MkII synapse 

The circuit is shown in Figure 3. The a-Si:H memory is used to store a current, 
Iasi. This current is subtracted from a zero current, Isy...:z" to give a weight current 
, +/-Iw, which adds or subtracts charge from the activity capacitor, Cact, thus 
implementing excitation or inhibition respectively. 

For the circuit to function correctly we must limit the voltage on the activity ca­
pacitor to the range [1.5v,3.5v], to ensure that the transistors mirroring Isy_z and 
Iasi remain in saturation. As Figure 3 shows, there are few reference signals and 
the circuit operates from a single +5v power supply rail, in sharp contrast to many 
earlier analogue neural circuits, including our own. 

+5v PWm 1 v"" 
II . .r--\. Vsel 
~ 881 ....L -.L Comparator 

* Cact 

Vramp ~ 

Ov 
E ;. "'E~-----------:~~ E ;. 
Mirror Set Synapse Neuron 

Power Supplies References Tail Currents 

Vrstv·2.5v 
V5_0=5.Ov Isy_z=5uA Ineu=4uA 

Figure 3: The MkII synapse 

PWout 
..rL 

On first inspection the main drawback of this design would appear to be a reliance 
on the accuracy with which the zero current Isy...:z, is mirrored across an entire chip. 
The variation in this current means that two cells with the same synapse resistance 
could produce widely differing values of Iw. However, during programming we 
do not use the resistance of the a-Si:H device as a target value. We monitor the 
voltage on Cact for a given PWin signal, increasing or decreasing the resistance 
of the a-Si:H device until the desired voltage level is achieved. 

Example: To set a weight to be the maximum positive value, we adjust the a-Si 
resistance until a PWin signal of 5us, the maximum input signal, gives a voltage of 
3.5v on the integration capacitor. 

We are able to set the synapse weight using the whole integration range of [1.5v,3.5v] 
by only closing V sel for the desired synapse during programming. In normal op­
erating mode all four Vsel switches will be closed so that the integration charge is 
summed over all four local capacitors. 
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4.1 Example - Stability Test 

As an example of the use of integration voltage as means of monitoring the resistance 
of a particular synapse we have included a stability test. This was carried out on 
one of the test chips which contained the MkII synapse. 

The four synapses on the test chip were programmed to give different levels of 
activation. The chip was then powered up for 30mins each day during a 7-day 
period, and the activation levels for each synapse were measured three times. 

Stability Test - PWin = 3us 
3.5 ,----~-_._--;--__..___r...:....,.-_._,.__-,.--.,..,.-__..__:___., 

testl test2 test3 test4 testS test6 test7 
3 

· . 
I , I I 

t:'" • • ~. • • • • 
~ - ~ -:- - ~ -:- - -:- - -. of - ~-:- - {,o-:- - - ~-s4 
-~ , . ,.... 

25 . . ' . . . . 
•
1:1 • • • . • • • • 

't - -~ - -~ - - --:- - -~ - - -~- - - w. -- --r s2 
-- - .;. '" - -: -011>- - :.. ~ - ~ -oGii - -:- - - - i-- ~ - ..; -sl · . . . . -. . 

2 ~ - - ~ - - -~- - - ~ - - L ---L- --~ --~ -s3 
• I • , • , • 
I , • , • • • 

I I • , • • • 

• , • , I , • 

• I • I • • • 

• • I • I • • 

I • : : • • • 

10 20 30 40 50 60 70 80 90 

Measurement Index 

Figure 4: ASiTEST2- Stability Test 

As figure 4 shows, the memories remain in the same resistance state (i.e retain their 
programmed weight value) over the whole 7-day period. Separate experiments on 
isolated devices indicate much longer hold times - of the order of months at least. 

5 ASiTEST3 

Recently we have received our latest, overtly neural, a-Si:H based test chip. This 
contains an 8x8 array of the MkII synapses. 

The circuit board for this device has been constructed and partially tested while 
the ASiTEST3 chips are awaiting the deposition of the a-Si:H layers. We have been 
able to use an ASiTEST2 chip containing two of the MkII synapse test blocks i.e. 
8 synapses and 2 neurons to exercise much of the board's functionality. 

The test board contains a simple state machine which has four different states: 

• State 0: Load Input Pulsewidths into SRAM from PC. 

• State 1: Apply Input Pulsewidth signals to chipl. 

• State 2: Use Vramp to generate threshold function for chipl. The resulting 
Pulsewidth outputs are used as the inputs to chip2, as well as being stored 
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in SRAM . 
• State 3: Use Vramp to generate threshold function for chip2. Read resulting 

Pulsewidth Outputs into SRAM . 

• State 0: Read Output Pulsewidths from SRAM into PC. 

The results obtained during a typical test cycle are shown in Figure 5. 

IE-- Statel --;,,;,,*1 EE-- State2 -----;>~i~ State3 ---;!>~I 
~r-IF~~~--r-------~---------l 
4v 
3v 
2v PWin_O 
Iv 
Ov~ ......... 

3.5v r;;;;;""-~,"",,,or;:::::;;:;::;;;;:;;;::;;t---~----t--------, 

~:~ ....... ~;a~;"""'" ~'Sig~;,id""""" ... ~"Li~"""" ...... 
2.Ov ....................... ,. ....... . .... ..... .......... .. .. 

l.~ 
e·_e _____ ...... ___ • _____ • ____________ ........ _____ •••• ____ .......... . 

5v 
4v 
3v 
2v 

:;; ~,...,. ............... -..--t; •. ~ . ..:... ~ __ --! .......... ~~.n-.-~~~~~~......J 
10. IS. 

Figure 5: ASiTEST3 Board Scope Waveforms 

As this figure shows different ramp signals, corresponding to different threshold 
functions, can be applied to chipl and chip2 neurons. 

Single Buffer PulscWidth Sweeps 
10.0 .----.,..----r------.----r----.------, 

9.0 

8.0 

! 7.0 - ~ 

i6.o~ 
~ 5'O~~~~~~~-~~-+++~~~~N~~~ 

J:: ~----
2D 

1.0 

o.oL---~--~---~--­
o 0.5 1.0 1.5 2.0 2.5 

Pulscwldlh Input [WI) 

Neal-Syal 
N~~JIII 

N~~ya2 

3.0 

Figure 6: ASiTEST3 Board - MkII Synapse Characteristic 

While the signals shown in Figure 5 appear noisy the multiplier characteristic that 
the chip produces is still admirably linear, as shown in Figure 6. In this experiment 
all eight synapses on a test chip were programmed into different resistance states 
and PWin was swept from 0 to 3us. 
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6 Conclusions 

We have demonstrated the use of novel a-Si:H analogue memory devices as a means 
of storing synaptic weights in a Pulsewidth ANN. We have also demonstrated the 
operation of an interface board which allows two 8x8 ANN chips, operating as a 
two layer network, to be controlled by a simple PC interface card. 

This technology is most suitable for small networks in, for example, remote con­
trol and other embedded-system applications where cost and power considerations 
favour a single all-inclusive ANN chip with non-volatile, but programmable weights. 

Another possible application of this technology is in large networks constructed 
using Thin Film Technology(TFT). If TFT's were used in place of the CMOS tran­
sistors then the area constraint imposed by crystalline silicon would be removed, 
allowing truly massively parallel networks to be integrated. 

In summary - the a-Si:H analogue memory devices described in this paper provide a 
route to an analogue, non-volatile and fast synaptic weight storage medium. At the 
present time neither the programming nor storage mechanisms are fully understood 
making it difficult to compare this new device with more established technologies 
such as the ubiquitous Floating-Gate EEPROM technique. Current research is 
focused on firstly, improving the yield on the a-Si:H device which is unacceptably 
low at present, a demerit that we attribute to imperfections in the a-Si fabrication 
process and secondly, improving understanding of the device physics and hence the 
programming and storage mechanisms. 
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