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Abstract 

A new learning algorithm is derived which performs online stochas­
tic gradient ascent in the mutual information between outputs and 
inputs of a network. In the absence of a priori knowledge about 
the 'signal' and 'noise' components of the input, propagation of 
information depends on calibrating network non-linearities to the 
detailed higher-order moments of the input density functions. By 
incidentally minimising mutual information between outputs, as 
well as maximising their individual entropies, the network 'fac­
torises' the input into independent components. As an example 
application, we have achieved near-perfect separation of ten digi­
tally mixed speech signals. Our simulations lead us to believe that 
our network performs better at blind separation than the Herault­
J utten network, reflecting the fact that it is derived rigorously from 
the mutual information objective. 
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1 Introduction 

Unsupervised learning algorithms based on information theoretic principles have 
tended to focus on linear decorrelation (Barlow & Foldiak 1989) or maximisation of 
signal-to-noise ratios assuming Gaussian sources (Linsker 1992). With the exception 
of (Becker 1992), there has been little attempt to use non-linearity in networks to 
achieve something a linear network could not. 

Non-linear networks, however, are capable of computing more general statistics 
than those second-order ones involved in decorrelation, and as a consequence they 
are capable of dealing with signals (and noises) which have detailed higher-order 
structure. The success of the 'H-J' networks at blind separation (Jutten & Her­
ault 1991) suggests that it should be possible to separate statistically independent 
components, by using learning rules which make use of moments of all orders. 

This paper takes a principled approach to this problem, by starting with the ques­
tion of how to maximise the information passed on in non-linear feed-forward net­
work. Starting with an analysis of a single unit, the approach is extended to a 
network mapping N inputs to N outputs. In the process, it will be shown that, 
under certain fairly weak conditions, the N ---. N network forms a minimally redun­
dant encoding ofthe inputs, and that it therefore performs Independent Component 
Analysis (ICA) . 

2 Information maximisation 

The information that output Y contains about input X is defined as: 

I(Y, X) = H(Y) - H(YIX) (1) 

where H(Y) is the entropy (information) in the output, while H(YIX) is whatever 
information the output has which didn't come from the input. In the case that we 
have no noise (or rather, we don't know what is noise and what is signal in the 
input), the mapping between X and Y is deterministic and H(YIX) has its lowest 
possible value of -00. Despite this, we may still differentiate eq.l as follows (see 
[5]): 

8 8 
8w I(Y, X) = 8w H(Y) (2) 

Thus in the noiseless case, the mutual information can be maximised by maximising 
the entropy alone. 

2.1 One input, one output. 

Consider an input variable, x, passed through a transforming function, g( x), to pro­
duce an output variable, y, as in Fig.2.1(a). In the case that g(x) is monotonically 
increasing or decreasing (ie: has a unique inverse), the probability density function 
(pdf) of the output fy(y) can be written as a function of the pdfofthe input fx(x), 
(Papoulis, eq. 5-5): 

f (y) = fx(x) (3) 
y 8y/8x 
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The entropy of the output, H(y), is given by: 

H(y) = -E[lnfy(y)] = -1: fy(y)lnfy(y)dy (4) 

where E[.] denotes expected value. Substituting eq.3 into eq.4 gives 

H(y) = E [In ~:] - E[lnfx(x)] (5) 

The second term on the right may be considered to be unaffected by alterations in 
a parameter, w, determining g(x). Therefore in order to maximise the entropy of y 
by changing w, we need only concentrate on maximising the first term, which is the 
average log of how the input affects the output. This can be done by considering 
the 'training set' of x's to approximate the density fx(x), and deriving an 'online', 
stochastic gradient descent learning rule: 

~W ex oH = ~ (In OY) = (oy) -1 ~ (oy) 
OW OW OX OX OW ox 

(6) 

In the case of the logistic transfer function y = (1 + e- U )-l , u = wx + Wo in which 
the input is multiplied by a weight wand added to a bias-weight wo, the terms 
above evaluate as: 

wY(l - y) (7) 

y(l - y)(l + wX(l - 2y)) (8) 

Dividing eq.8 by eq.7 gives the learning rule for the logistic function, as calculated 
from the general rule of eq.6: 

1 
~w ex - + x(l - 2y) 

W 

Similar reasoning leads to the rule for the bias-weight: 

~wo ex 1- 2y 

(9) 

(10) 

The effect of these two rules can be seen in Fig. 1a. For example, if the input 
pdf fx(x) was gaussian, then the ~wo-rule would centre the steepest part of the 
sigmoid curve on the peak of fx(x), matching input density to output slope, in a 
manner suggested intuitively by eq.3. The ~w-rule would then scale the slope of 
the sigmoid curve to match the variance of fx (x). For example, narrow pdfs would 
lead to sharply-sloping sigmoids. The ~w-rule is basically anti-Hebbian1 , with an 
anti-decay term. The anti-Hebbian term keeps y away from one uninformative 
situation: that of y being saturated to 0 or 1. But anti-Hebbian rules alone make 
weights go to zero, so the anti-decay term (l/w) keeps y away from the other 
uninformative situation: when w is so small that y stays around 0.5. The effect 
of these two balanced forces is to produce an output pdf fy(y) which is close to 
the flat unit distribution, which is the maximum entropy distribution for a variable 

11£ y = tanh(wx + wo) then ~w ex !;; - 2xy 



470 Anthony 1. Bell, Terrence 1. Sejnowski 

4 

~---' 0 --~---4"""",""::~---- X 

y 

(a) ----~~~--~----X ox (b) 

Figure 1: (a) Optimal information flow in sigmoidal neurons (Schraudolph et al 
1992). Input x having density function fx(x), in this case a gaussian, is passed 
through a non-linear function g(x). The information in the resulting density, fy(Y) 
depends on matching the mean and variance of x to the threshold and slope of g( x). 
In (b) fy(y) is plotted for different values of the weight w. The optimal weight, Wopt 

transmits most information. 

bounded between 0 and 1. Fig. 1b illustrates a family of these distributions, with 
the highest entropy one occuring at Wopt . 

A rule which maximises information for one input and one output may be suggestive 
for structures such as synapses and photoreceptors which must position the gain of 
their non-linearity at a level appropriate to the average value and size of the input 
fluctuations. However, to see the advantages of this approach in artificial neural 
networks, we now analyse the case of multi-dimensional inputs and outputs. 

2.2 N inputs, N outputs. 

Consider a network with an input vector x, a weight matrix Wand a monotonically 
transformed output vector y = g(Wx + wo). Analogously to eq.3, the multivariate 
probability density function of y can be written (Papoulis, eq. 6-63): 

f ( ) = fx(x) 
y y IJI (11) 

where IJI is the absolute value ofthe Jacobian of the transformation. The Jacobian 
is the determinant of the matrix of partial derivatives: 

[ ~ ~] 8Xl 8x n 

J = det: : 
~ ~ 
8Xl 8xn 

(12) 

The derivation proceeds as in the previous section except instead of maximising 
In(8y/8x), now we maximise In IJI. For sigmoidal units, y = (1 + e-U)-l, U = 
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Wx + Wo, the resulting learning rules are familiar in form: 

D. W ex: [WTrl + x(1 - 2y? 

D.wo ex: 1- 2y 

(13) 

(14) 

except that now x, y, Wo and 1 are vectors (1 is a vector of ones), W is a matrix, 
and the anti-Hebbian term has become an outer product. The anti-decay term has 
generalised to the inverse of the transpose of the weight matrix. For an individual 
weight, Wij, this rule amounts to: 

cof Wij 
D.wij ex: det W + xj(l - 2Yi) (15) 

where cof Wij, the cofactor of Wij, is (-1 )i+j times the determinant of the matrix 
obtained by removing the ith row and the jth column from W. 

This rule is the same as the one for the single unit mapping, except that instead of 
W = 0 being an unstable point of the dynamics, now any degenerate weight matrix 
is unstable, since det W = 0 if W is degenerate. This fact enables different output 
units, Yi, to learn to represent different components in the input. When the weight 
vectors entering two output units become too similar, det W becomes small and the 
natural dynamic of learning causes these weight vectors to diverge. This effect is 
mediated by the numerator, cof Wij. When this cofactor becomes small, it indicates 
that there is a degeneracy in the weight matrix of the rest of the layer (ie: those 
weights not associated with input Xj or output Yi). In this case, any degeneracy in 
W has less to do with the specific weight Wij that we are adjusting. 

3 Finding independent components - blind separation 

Maximising the information contained in a layer of units involves maximising the 
entropy of the individual units while minimising the mutual information (the re­
dundancy) between them. Considering two units: 

(16) 

For I(Yl, Y2) to be zero, Yl and Y2 must be statistically independent of each other, 
so that fY1Y2(Yl, Y2) = fYl (ydfY2(Y2). Achieving such a representation is variously 
called factorial code learning, redundancy reduction (Barlow 1961, Atick 1992), or 
independent component analysis (ICA), and in the general case of continuously 
valued variables of arbitrary distributions, no learning algorithm has been shown 
to converge to such a representation. 

Our method will converge to a minimum redundancy, factorial representation as 
long as the individual entropy terms in eq.16 do not override the redundancy term, 
making an I(Yl, Y2) = 0 solution sub-optimal. One way to ensure this cannot occur 
is if we have a priori knowledge of the general form of the pdfs of the indepen­
dent components. Then we can tailor our choice of node-function to be optimal for 
transmitting information about these components. For example, unit distributions 
require piecewise linear node-functions for highest H(y), while the more common 
gaussian forms require roughly sigmoidal curves. Once we have chosen our node­
functions appropriately, we can be sure that an output node Y cannot have higher 



472 

slt--_---<x\. __ ---4!'.~ 
o 
o 
o 

)<----~ 1'-----..:·0 

unknown 
mixing 
process 

BUND 
SEPARATION 
(learnt weights) 

Anthony 1. Bell, Terrence 1. Sejnowski-

WA after learning: 

'" 1-4.091 0.13 0.09 -0.07 -0.01 
0.07 1-2.921 0.00 0.02 -0.06 
0.02 -0.02 -0.06 -0.08 1-2.2ij 
0.02 0.03 0.00 11.971 0.02 
-0.07 0.14 1-3.501 -0.01 0.04 

Figure 2: (a) In blind separation, sources, s, have been linearly scrambled by a 
matrix, A, to form the inputs to the network, x. We must recover the sources at 
our output y, by somehow inverting the mapping A with our weight matrix W. The 
problem: we know nothing about A or the sources. (b) A successful 'unscrambling' 
occurs when WA is a 'permutation' matrix. This one resulted from separating five 
speech signals with our algorithm. 

entropy by representing some combination of independent components than by rep­
resenting just one. When this condition is satisfied for all output units, the residual 
goal, of minimising the mutual information between the outputs, will dominate the 
learning. See [5] for further discussion of this. 

With this caveat in mind, we turn to the problem of blind separation, (Jutten & 
Herault 1991), illustrated in Fig.2. A set of sources, Sl, ... , SN, (different people 
speaking, music, noise etc) are presumed to be mixed approximately linearly so 
that all we receive is N superpositions of them, Xl, ... , X N, which are input to our 
single-layer information maximisation network. Providing the mixing matrix, A, is 
non-singular then the original sources can be recovered if our weight matrix, W, is 
such that W A is a 'permutation' matrix containing only one high value in each row 
and column. 

Unfortunately we know nothing about the sources or the mixing matrix. However, 
if the sources are statistically independent and non-gaussian, then the information 
in the output nodes will be maximised when each output transmits one independent 
component only. This problem cannot be solved in general by linear decorrelation 
techniques such as those of (Barlow & Foldicik 1989) since second-order statistics 
can only produce symmetrical decorrelation matrices. 

We have tested the algorithm in eq.13 and eq.14 on digitally mixed speech signals, 
and it reliably converges to separate the individual sources. In one example, five 
separately-recorded speech signals from three individuals were sampled at 8kHz. 
Three-second segments from each were linearly mixed using a matrix of random 
values between 0.2 and 4. Each resulting mixture formed an incomprehensible 
babble. Time points were generated at random, and for each, the corresponding 
five mixed values were entered into the network, and weights were altered according 
to eq.13 and eq.14. After on the order of 500,000 points were presented, the network 
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had converged so that WA was the matrix shown in Fig.2b. As can be seen from 
the permutation structure of this matrix, on average, 95% of each output unit is 
dedicated to one source only, with each unit carrying a different source. Any residual 
interference from the four other sources was inaudible. 

We have not yet performed any systematic studies on rates of convergence or exis­
tence of local minima. However the algorithm has converged to separate N inde­
pendent components in all our tests (for 2 ~ N ~ 10). In contrast, we have not 
been able to obtain convergence of the H-J network on our data set for N > 2. 

Finally, the kind of linear static mixing we have been using is not equivalent to what 
would be picked up by N microphones positioned around a room. However, (Platt 
& Faggin 1992) in their work on the H-J net, discuss extensions for dealing with 
time-delays and non-static filtering, which may also be applicable to our methods. 

4 Discussion 

The problem of Independent Component Analysis (ICA) has become popular re­
cently in the signal processing community, partly as a result ofthe success ofthe H-J 
network. The H-J network is identical to the linear decorrelation network of (Bar­
low & Foldicik 1989) except for non-linearities in the anti-Hebb rule which normally 
performs only decorrelation. These non-linearities are chosen somewhat arbitrarily 
in the hope that their polynomial expansions will yield higher-order cross-cumulants 
useful in converging to independence (Comon et aI, 1991). The H-J algorithm lacks 
an objective function, but these insights have led (Comon 1994) to propose min­
imising mutual information between outputs (see also Becker 1992). Since mutual 
information cannot be expressed as a simple function of the variables concerned, 
Comon expands it as a function of cumulants of increasing order. 

In this paper, we have shown that mutual information, and through it, ICA, can 
be tackled directly (in the sense of eq.16) through a stochastic gradient approach. 
Sigmoidal units, being bounded, are limited in their 'channel capacity' . Weights 
transmitting information try, by following eq.13, to project their inputs to where 
they can make a lot of difference to the output, as measured by the log of the 
Jacobian of the transformation. In the process, each set of statistically 'dependent' 
information is channelled to the same output unit. 

The non-linearity is crucial. If the network were just linear, the weight matrix would 
grow without bound since the learning rule would be: 

(17) 

This reflects the fact that the information in the outputs grows with their vari­
ance. The non-linearity also supplies the higher-order cross-moments necessary 
to maximise the infinite-order expansion of the information. For example, when 
y = tanh( u), the learning rule has the form D.. W ex: [wT] -1 - 2yxT , from which we 
can write that the weights stabilise (or (D..W) = 0) when 1= 2(tanh(u)uT ). Since 
tanh is an odd function, its series expansion is of the form tanh( u) = L:j bj u2P+1 , 

the bj being coefficients, and thus this convergence criterion amounts to the con­
dition L:i,j bijp(U;P+1Uj) = 0 for all output unit pairs i 1= j, for p = 0,1,2,3 ... , 
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and for the coefficients bijp coming from the Taylor series expansion of the tanh 
function. 

These and other issues are covered more completely in a forthcoming paper (Bell 
& Sejnowski 1995). Applications to blind deconvolution (removing the effects of 
unknown causal filtering) are also described, and the limitations of the approach 
are discussed. 
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