Direct Multi-Step Time Series
Prediction Using TD()\)

Peter T. Kazlas Andreas S. Weigend
Department of Electrical Department of Computer Science
and Computer Engineering and Institute of Cognitive Science
University of Colorado University of Colorado
Boulder, CO 80309-0425 Boulder, CO 80309-0430
pkazlas@colorado.edu andreas@cs.colorado.edu”
Abstract

This paper explores the application of Temporal Difference (TD) learning
(Sutton, 1988) to forecasting the behavior of dynamical systems withreal-
valued outputs (as opposed to game-like situations). The performance
of TD learning in comparison to standard supervised learning depends
on the amount of noise present in the data. In this paper, we use a
deterministic chaotic time series from a low-noise laser. For the task of
direct five-step ahead predictions, our experiments show that standard
supervised learning is better than TD learning. The TD algorithm can be
viewed as linking adjacent predictions. A similar effect can be obtained
by sharing the internal representation in the network. We thus compare
two architectures for both paradigms: the first architecture (“separate
hidden units”) consists of individual networks for each of the five direct
multi-step prediction tasks; the second (“shared hidden units™) has a
single (larger) hidden layer that finds a representation from which all five
predictions for the next five steps are generated. For this data set we do
not find any significant difference between the two architectures.

*http://www.cs.colorado.edu/~andreas/Home.html.
This paper is available with figures in colors as £tp://£ftp.cs.colorado.edu/pub/
Time-Series/MyPapers/kazlas.weigend nips7.ps.Z .



722 Peter Kazlas, Andreas S. Weigend

1 Introduction

The Santa Fe Time Series Prediction and Analysis Competition (Weigend & Gershenfeld,
1994) saw a relatively large number of different nonlinear techniques applied to the predic-
tion of a few time series. One of the results was that some neural networks did very well (but
incidentally some other neural networks also did very poorly). All neural networks were
trained with standard supervised learning where the network is trained based on differences
between the predicted and observed values of the series. The differences only concerned
the architecture; a good example was the time delay neural network architecture, also called
finite impulse response network.

Standard supervised learning (SL), on the one hand, views time series prediction essentially
as nonlinear regression; the fact that we are dealing with a time series is basically ignored.
Temporal difference (TD) learning, on the other hand, takes a different approach: it adjusts
the parameters based on differences between successive predictions in time (Sutton, 1988).
TD learning has been shown to be very successful in the context of games such as backgam-
mon (Tesauro, 1992). This paper investigates whether the TD paradigm can also be applied
to the somewhat different task of time series prediction.

This paper is organized as follows: after briefly reviewing TD learning, Section 2 focuses
on the application of TD learning to multi-step prediction of time series, and contrasts it
to supervised learning (see Figure 1). Section 3 then describes the architectures and cost
function as well as the data set used in the experiments. Section 4 presents the results, and
Section 5 summarizes the paper.

2 TD learning for nonlinear, direct multi-step predictors

The key idea behind TD learning is that errors (used for gradient descent) are based on
predictions that are adjacent in time. This is in contrast to the traditional SL approach
where the errors are based on the difference between the prediction and the observed value.
The general expression for the TD weight update rule (linear case), TD()), is given by
(Sutton, 88)

t
Awy =1 (Geq1 — ) D_ N F Vo (1)
k=1

where 7 is the learning rate; §:4; and §; are two adjacent predictions of the equivalent
target; ) is the recency weight with 0 < A < 1; and V,, §j;, is the gradient of the prediction
at time k£ with respect to the weights of the network.

In Equation (1), we use the present weights to calculate the predictions §; and :4+; and
we use the past weights to calculate the past gradients. In our experiments, since §; is
an output of a nonlinear connectionist network, we form §; by propagating it through a
multilayer network with hidden units and we backpropagate weight changes by applying
the chain rule to the gradient V,, g with respect to the hidden layer activation function.
Several variants of TD(A) exist: TD(0) only forms gradients based on the present pair of
predictions (§, §:+1); TD(1) continually adds gradients with no weighting of recency; and
in the general case, TD()) weights the kth past gradient by a recency weight of A¥. As will
be shown in the subsequent section, in our example, TD(A) tends to lead to the best results
for A around 0.3 (the optimal value of A cannot be determined by first principles).



Direct Multi-Step Time Series Prediction Using TD(A) 723

In multi-step prediction, we directly predict the value of a time series n time steps into
the future (y;+n denotes the observed value at ¢ + n), given a set of m past values at
time ¢ denoted by the observation vector x; : (¢, Yt—1,- - .Yt—m—1). To cast the multi-
step prediction problem into the TD framework, we first form an overlapping sequence of
predictions as described by Sutton (1988): For an n-step ahead prediction problem, we
form n successive predictions of the same target y:4n: 97, 9erts - Olpney @ is the
prediction at time ¢ for the time series 6 steps ahead). At each time step, we form two sets
of predictions §¢ and g;’;} based on the observation pair (x;, x¢+1). The corresponding
weight update at time ¢ involves the temporal difference of the these equivalent predictions:

t
Awf = (905 - 90) D N FVL ) 2)
k=1

Equation (2) shows that the TD algorithm reduces to the SL algorithm for single-step
predictions, since there is no temporal structure revealed in time (i.e. the actual value is
available with the first observation pair (x;, X;41) at time ¢, and therefore g? 1 = Yt+1).
However, for a multi-step prediction problem, temporal structure exists in the revelation of
the observation vectors. on-line, the

To differentiate the two algorithms, Figure 1 depicts the backpropagation of errors using
SL and TD learning algorithms. In SL, errors are generated by the squared difference
between predicted and target values: network training simply tries to minimize the error
function based on structural difference between the predicted (gf, or simply @) and target
values (yg), see (Figure 1(a)). In (Figure 1(b)), TD learning minimizes a different error
function—the difference between successive predictions x(¢) and Jx—1(t + 1). Note, in
the case of a noiseless time series, we do not expect to see a difference in performance
between SL and TD learning, as the actual values of the time series are accurate descriptors
of the system’s output. In the case of a noisy time series, we conjecture that TD learning
provides a better teaching signal than simply using the noisy observable. In this paper, we
begin by comparing the performance of SL and TD learning on a low noise deterministic
time series.

Y-m Ya Yo
(a) Supervised Learning (b) Temporal Difference Learning

Figure 1. Backpropagation for Supervised and Temporal Difference learning.



724 Peter Kazlas, Andreas S. Weigend

3 Architecture and Data

The multi-step prediction problem we chose is to directly predict the next five values of a
time series given the past five values. In comparing the two algorithms, we examine two
architectures and compare their performance on a real-world dataset.

Architecture. Two network architectures were chosen to compare the SL and TD algo-
rithms in the multi-step prediction task.

e Separate hidden units. The first architecture consists of five separate prediction
networks, each forming a single prediction g; for the ith step-ahead prediction of
the series. The five outputs correspond to the predictions §; through §s. Each
network has five input units (corresponding to the past five values of the time
series), 10 hidden units (arbitrarily chosen) and a single linear output for each
task.

¢ Shared hidden units. The second architecture is a single network with five outputs
corresponding to the five predictions (g . .. J5). The network has the same five
inputs, but has 20 tanh hidden units.

Cost Function. We train on sum squared error, weighting all five predictions equally. In
the supervised learning case, the predictions are compared to the actual values, while in the
TD case, errors are calculated based on successive predictions:

5

Erpt) = Y (@e-1(t +1) - :(0)? )
k=1

Search. In network training, we use batch updates, i.e., update weights after each pass
through the training data. Network training continues until the error on the cross-validation
set stagnates or begins to increase. For networks trained by TD learning, A, the recency
weight, ranges from 0 < A < 0.5.

Data. We use the laser data from the Santa Fe Competition.! The data are intensity
measurements of a NH; laser in a chaotic state, exhibiting Lorenz-like dynamics. We
use the 1,000 competition data points for training, but also 1,000 further points for cross-
validation of our model and 2,000 further points for testing. We depart from the competition
rules in order to get higher statistical significance.

4 Results

Learning curves. We begin our analysis by plotting the squared error normalized by the
variance for each of the five output units (§; — §s) as a function of training time for both

'The data set and several predictions and characterizations are described in the vol-
ume edited by Weigend and Gershenfeld (1994). The data is available by anonymous
ftp at £tp.cs.colorado.edu in /pub/Time-Series/SantaFe as A.dat. See also
http://www.cs.colorado.edu/Time-Series/TSWelcome.html for further analyses
of this and other time series data sets.



Direct Multi-Step Time Series Prediction Using TD(A) 725

learning algorithms in Figure 2.2 In the SL case, although the sum of the five curves
monotonically decreases, they individually can fall and rise again. This plot shows the
trade-offs in multi-task learning. For example, §; is learned early and then levels off,
because Js is being learned. In the TD learning case, the five curves are ordered in the
order that we would expect with the error associated with §; always smaller than §, and so
on. This is expected, since the ith prediction §; is driven by the prediction §;_; projected
one step into the future. We also note that the §; curve is similar for both paradigms, since
the error is driven by the same observed value y;.

10° SL: shared TD(0.2): shared

10 104 10 104

z z
Epochs Epochs

Figure 2: Enms for each output versus training epochs (training set) for both supervised
and TD learning. Typical runs are shown and both architectures exhibit the same behavior.
Learning rates were varied during training to accelerate learning. In the TD(0.2) case, the
leveling of the error curves at 2,000 epochs is due to a decrease in learning rate.

Performance metric. We compare the performances with the normalized mean square
error,

N A
Zk=1(yk - yk)z
¥ k=1 (i — mean)?

where N is the number of samples; y;, and §;, are the actual and predicted values.

Enms =

(4)

Comparison between SL and TD learning on five-step prediction. The longer the lead
time for the forecast, the larger the expected difference in performance between TD and
SL. We thus focus on five-step predictions where the difference between SL and TD is most
pronounced from the set we considered (§:-§s). Figure 3 shows the individual performances
of several runs for the task of direct five-step predictions. We vary the architecture (left side
is shared hidden units, right side is separate hidden units), and we vary in each sub-plot the
training (SL, TD(0), TD(0.2), TD(0.3), TD(0.5)). There is no large difference within TD
for different values of A. However, there is a significant difference between SL and TD:
SL is better than TD. This result depends crucially on the fact that the data have very low
noise (the main source of noise is just the quantization error of the 8-bit analog to digital
converter).

2The normalized mean square errors Exms do not start with 1.0 as it would have been the case for
very small initial weights; we ran the experiments (for no particular reason) with rather large initial
weights, drawn from a uniform distribution between -1 and +1.



726 Peter Kazlas, Andreas S. Weigend

2 5 5
194
18t o
® 17t
o st ° 8 8
1Z] 15+ o Q 8 8 § o
E 144 P g 8 o H
134 e o © B o g 8
2t § o
ut
0t B e
SL TD(0) TD(.2) TD(.3) TD(.5) SL TD(0) TD(.2) TD(.3) TD(.5)
Shared Hidden Units Separate Hidden Units

Figure 3: Enys for the direct five-step prediction §s for both architectures (test set).

Performance comparison between single task and multi-task SL learning. Still for the
task of five-step ahead prediction, we wanted to investigate whether predicting several tasks
versus predicting a single task is beneficial. Comparing the SL column between the left and
the right side of Figure 3 shows no significant difference. To eliminate the hypotheses that
the performance was limited by the available number of hidden units, we also ran networks
with only a single output unit for the one task of §s and allocated up to 50 hidden units.
The performance still remains the same. Thus, the fact that additional tasks did not hurt the
performance indicates that the networks had sufficient resources. The fact that additional
tasks did not help the performance indicates that there is only little noise in the data. This
is different in high-noise problems, e.g., Weigend, Huberman and Rumelhart (1992) used
multi-task predictions for currency exchange rates. See also Breiman and Friedman (1994),
Caruana (1994), and Nix and Weigend (1995) for further discussions on multi-task learning.

NMSE (%)

(a) shared hidden units (b) separale hidden unils

Figure 4: Summary of test set performance for SL and TD()) for both architectures.

SL vs. TD learning. Figure 4 and Table 1 summarize the performance of all the networks.
As stated earlier, networks trained by SL outperformed networks trained by TD(X) for §s.
For earlier predictions §; — §s, no significant performance discrepancies exist for either
architecture or learning algorithm. Note, for §;, the results for the TD(0) and SL networks
are equivalent for the separate hidden unit network, since the error function was equivalent
for both algorithms. Among the networks trained by TD learning, the TD(0.3) and TD(0.5)
networks exhibit the best average performance.



Direct Multi-Step Time Series Prediction Using TD(2) 727

Predicion SL TD@®) TD(0.2) TD(0.3) TD(0.5) | + ¢
Shared:
0 2.1 2.1 2.0 2.1 23 0.13
(053 7.0 7.1 6.6 6.7 7.0 0.63
U3 102 100 9.8 10.0 11.8 0.83
Ua 109 124 11.8 12.5 144 0.91
Js 11.0 148 139 14.6 16.8 1.30
Separate:
) 1.8 1.8 1.7 1.7 1.7 0.05
) 6.2 58 58 6.0 6.1 0.25
02 102 90 8.7 8.8 8.9 0.72
Ua 108 115 113 112 11.0 0.57
Us 122 139 13.8 13.7 13.4 0.85

Table 1: Summary of test set performance for SL and TD(X) (Enws is given in percent and
o is the empirical standard deviation averaged over each row).

TD(0.3): Shared

o TD(0.3): Separate
10 7 10 5

Actual Error

Figure 5: TD errors versus actual errors for both architectures (A = 0.3)

Actual versus Temporal Difference errors. Since the temporal difference learning rule
is based on the error between neighboring predictions in time, the following question may
arise: How do the actual errors (between the predicted and observed values) vary with
respect to the TD errors (between adjacent predictions of the same target) during training?
Figure 5 plots the actual errors versus TD errors for A=0.3 for both architectures. For
both architectures, the TD errors are smaller than the actual errors. From Figure 5, in both
architectures, nearer prediction errors influence further predictions. For noisier data sets,
the curves in Figure 5, we expect, will take on an upward slope at the end of training,
signaling that overfitting has begun.

5 Conclusions

We explored the application of Temporal Difference (TD) learning to forecasting real-valued
time series, as opposed to game-like situations. After relating TD learning to supervised



728 Peter Kazlas, Andreas S. Weigend

learning (SL) from a general perspective, we compare and analyze the performance of both
paradigms on a specific data set, the deterministic chaotic laser data used in the Santa Fe
Competition. For this low-noise time series data we find

e Within each paradigm, the learning curves (for the individual outputs) do not
depend on the specific architecture of shared or separate hidden units.

Across the two paradigms, the learning curves in SL show a larger error trade-off
amongst the individual outputs than in TD learning.

o For the longest lead time considered (five-step ahead predictions), the difference
between SL and TD is most pronounced: SL outperforms TD.

e Within SL, giving the network additional tasks (such as not only predicting the
five-step ahead forecast but also the intermediate steps and using shared hidden

units) did not change the performance compared to a single output with separate
hidden units.

e The best choice of the recency weight A appears to be inthe range of 0.2 < A < 0.5.

e Plotting the TD error versus the actual error is a useful new diagnostic, particularly
on out-of-sample data for noisy problems.

The performance of TD learning in comparison to SL depends on the amount of noise
present in the data. For the low noise time series used in this paper, there is no advantage
in using TD learning over SL. At present, we are comparing the two paradigms on noisy
real-world data where overfitting is a serious challenge.

Acknowledgments

We thank Richard Sutton for his suggestions concerning the implementation. Andreas Weigend
acknowledges support from the National Science Foundation, Research Initiation Grant No. RIA
ECS-9309786.

References

L. Breiman and J.H. Friedman (1994) “A New Look at Multiple Outputs.” Abstract, Neural Networks
for Computing, Snowbird, UT, April 1994

R.A. Caruana (1994) “Multitask Connectionist Learning.” In Proceedings of the 1993 Connectionist
Models Summer School, edited by M. C. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, and
A. S. Weigend, p. 372-379. Hillsdale, NJ: Erlbaum Associates.

D.A. Nix and A.S. Weigend (1995) “Learning Local Error Bars for Nonlinear Regression.” In
Advances in Neural Information Processing Systems 7 (NIPS*94, this volume). San Francisco, CA:
Morgan Kaufmann.

R.S. Sutton (1988) “Learning to Predict by the Methods of Temporal Differences.” Machine Learning
3: 9-44,

G. Tesauro (1992) “Practical Issues in Temporal Difference leaming.” Machine Learning 8: 257-277.

A.S. Weigend & N.A. Gershenfeld, eds. (1994) Time Series Prediction: Forecasting the Future and
Understanding the Past. Reading, MA: Addison-Wesley.

A.S. Weigend, B.A. Huberman, and D.E. Rumelhart (1992) “Predicting Sunspots and Exchange Rates
with Connectionist Networks.” In Nonlinear Modeling and Forecasting, edited by M. Casdagli, and
S. Eubank, p. 395-432. Redwood City, CA: Addison-Wesley.



PART VI
IMPLEMENTATIONS







