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Abstract 

Ideally pattern recognition machines provide constant output when 
the inputs are transformed under a group 9 of desired invariances. 
These invariances can be achieved by enhancing the training data 
to include examples of inputs transformed by elements of g, while 
leaving the corresponding targets unchanged. Alternatively the 
cost function for training can include a regularization term that 
penalizes changes in the output when the input is transformed un­
der the group. 

This paper relates the two approaches, showing precisely the sense 
in which the regularized cost function approximates the result of 
adding transformed (or distorted) examples to the training data. 
The cost function for the enhanced training set is equivalent to the 
sum of the original cost function plus a regularizer. For unbiased 
models, the regularizer reduces to the intuitively obvious choice -
a term that penalizes changes in the output when the inputs are 
transformed under the group. For infinitesimal transformations, 
the coefficient of the regularization term reduces to the variance of 
the distortions introduced into the training data. This correspon­
dence provides a simple bridge between the two approaches. 
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1 A pproaches to Invariant Learning 

In machine learning one sometimes wants to incorporate invariances into the func­
tion learned. Our knowledge of the problem dictates that the machine outputs 
ought to remain constant when its inputs are transformed under a set of operations 
gl. In character recognition, for example, we want the outputs to be invariant 
under shifts and small rotations of the input image. 

In neural networks, there are several ways to achieve this invariance 

1. The invariance can be hard-wired by weight sharing in the case of summa­
tion nodes (LeCun et al. 1990) or by constraints similar to weight sharing 
in higher-order nodes (Giles et al. 1988). 

2. One can enhance the training ensemble by adding examples of inputs trans­
formed under the desired inval"iance group, while maintaining the same 
targets as for the raw data. 

3. One can add to the cost function a regularizer that penalizes changes in the 
output when the input is transformed by elements of the group (Simard et 
al. 1992). 

Intuitively one expects the approaches in 3 and 4 to be intimately linked. This 
paper develops that correspondence in detail. 

2 The Distortion-Enhanced Input Ensemble 

Let the input data x be distributed according to the density function p( x). The con­
ditional distribution for the corresponding targets is denoted p(tlx). For simplicity 
of notation we take t E R. The extension to vector targets is trivial. Let f(x; w) 
denote the network function, parameterized by weights w. The training procedure 
is assumed to minimize the expected squared error 

£(w) = J J dtdx p(tlx) p(x) [t - f(x; w)]2 . (1) 

vVe wish to consider the effects of adding new inputs that are related to the old by 
transformations that correspond to the desired invariances. These transformations, 
or distortions, of the inputs are carried out by group elements g E g. For Lie 
groups2, the transformations are analytic functions of parameters a E Rk 

x -t x' = g(x;a) , 

with the identity transformation corresponding to parameter value zero 

g(x;O) = x . 

(2) 

(3) 

In image processing, for example, we may want our machine to exhibit invariance 
with respect to rotation, scaling, shearing and translations of the plane. These 

1 We assume that the set forms a group. 
2See for example (Sattillger, 1986). 
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transformations form a six-parameter Lie group3. 

By adding distorted input examples we alter the original density p( x). To describe 
the new density, we introduce a probability density for the transformation param­
eters p(a). Using this density, the distribution for the distortion-enhanced input 
ensemble is 

p(x') = j j dadx p(x'lx,a) p(a) p(x) 

= j jdadxt5(x'-g(x;a»p(a)p(x) 

where t5(.) is the Dirac delta function4 

Finally we impose that the targets remain unchanged when the inputs are trans­
formed according to (2) i.e., p(tlx') = p(tlx). Substituting p(x') into (1) and using 
the invariance of the targets yields the cost function 

t = j j J dtdxda p(tlx)p(x)p(a) [t - f(g(x;a);w)]2 (4) 

Equation (4) gives the cost function for the distortion-enhanced input ensemble. 

3 Regularization and Hints 

The remainder of the paper makes precise the connection between adding trans­
formed inputs, as embodied in (4), and various regularization procedures. It is 
straightforward to show that the cost function for the distortion-enhanced ensem­
ble is equivalent to the cost function for the original data ensemble (1) plus a 
regularization term. Adding and subtracting f(x; w) to the term in square brackets 
in (4), and expanding the quadratic leaves 

t = E + ER , (5) 

where the regularizer is 

ER = EH + Ec 

J da p(a) j dx p(x) [f(x, w) - f(g(x; a); w)]2 

- 2 J j J dtdxda p(tlx) p(x) p(a) 

x[t - f{x;w)] [f(g(x;a);w) - f(x;w)] (6) 

3The parameters for rotations, scaling and shearing completely specify elements of G L2, 
the four parameter group of 2 x 2 invertible matrices. The translations carry an additional 
two degrees of freedom. 

4 In general the density on 0 might vary through the input space, suggesting the con­
ditional density p(o I :1'). This introduces rather minor changes in the discussion that will 
not be considered here. 
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Training with the original data ensemble using the cost function (5) is equivalent 
to adding transformed inputs to the data ensemble. 

The first term of the regularizer £ H penalizes the average squared difference between 
I(x;w) and I(g(x;a);w). This is exactly the form one would intuitively apply 
in order to insure that the network output not change under the transformation 
x -4 g( x, a). Indeed this is the similar to the form of the invariance "hint" proposed 
by Abu-Mostafa (1993). The difference here is that there is no arbitrary parameter 
multiplying the term. Instead the strength of the regularizer is governed by the 
average over the density pea). The term £H measures the error in satisfying the 
invariance hint. 

The second term £a measures the correlation between the error in fitting to the 
data, and the errol' in satisfying the hint. Only when these correlations vanish is 
the cost function for the enhanced ensemble equal to the original cost function plus 
the invariance hint penalty. 

The correlation term vanishes trivially when either 

1. The invariance I (g( x; a); w) = I (x; w) is satisfied, or 

2. The network function equals the least squares regression on t 

I(x; w) = J dt p(tlx) t = E[tlx] . (7) 

The lowest possible £ occurs when I satisfies (7), at which £ becomes the 
variance in the targets averaged over p( x ). By substituting this into £a 
and carrying out the integration over dt p( tlx), the correlation term is seen 
to vanish. 

If the minimum of t occurs at a weight for which the invariance is satisfied (condition 
1 above). then minimizing t ( w) is equivalent to minimizing £ ( w). If the minimum of 
t occurs at a weight for which the network function is the regression (condition 2), 
then minimizing t is equivalent to minimizing the cost function with the intuitive 
regularizer £ H 5. 

3.1 Infinitesimal Transformations 

Above we enumerated the conditions under which the correlation term in £R van­
ishes exactly for unrestricted transformations. If the transformations are analytic 
in the paranleters 0', then by restricting ourselves to small transformations (those 
close to the identity) we can-show how the correlation term approximately vanishes 
for unbiased models. To implement this, we assume that p( a) is sharply peaked up 
about the origin so that large transformations are unlikely. 

51£ the data is to be fit optimally, with enough freedom left over to satisfy the invariance 
hint, then there must be several weight values (perhaps a continuum of such values) for 
which the network function satisfies (7). That is, the problem must be under-specified. If 
this is the case, then the interesting part weight space is just the subset on which (7) is 
satisfied. On this subset the correlation term in (6) vanishes and the regularizer assumes 
the intuitive form. 
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We obtain an approximation to the cost function t by expanding the integrands in 
(6) in power series about 0 = 0 and retaining terms to second order. This leaves 

t = c + J J dxdo p(x) p(o) (Oi :~ L=o :!" f 
-2 J J J dt dx do p(tlx)p(x)p(o) [t-f(x;w)] x 

[ ( Og"l 1 02 gIl I ) ( of) 0°- +-0°0° -
• OOi 0=0 2' J OOi (0) 0=0 ax" 

(8) 

where x P and gP denote the pth components of x and g, OJ denotes the ith com­
ponent of the transformation parameter vector, repeated Greek and Roman indices 
are summed over, and all derivatives are evaluated at 0 = o. Note that we have 
used the fact that Lie group transformations are analytic in the parameter vector 
o to derive the expansion. 

Finally we introduce two assumptions on the distribution p(o). First 0 is assumed 
to be zero mean. This corresponds, in the linear approximation, to a distribution 
of distortions whose mean is the identity transformation. Second, we assume that 
the components of 0 are uncorrelated so that the covariance matrix is diagonal 
with elements ul, i = 1 ... k. 6 With these assumptions, the cost function for the 
distortion-enhanced ensemble simplifies to 

t = c + ~ (Tr J dx p( x) ( ~g"l : f ) 2 
~ va. a=O vx" 
.=1 

k 

- L (T~ J J dx dt p(tlx) p(X) { (f(x; w) - t ) 
.=1 

X [ ~:; 10=0 ( :~ ) + :~ L=o :~ L=o (ox~2£x" )]} 

This last expression provides a simple bridge between the the methods of adding 
transformed examples to the data, and the alternative of adding a regularizer to 
the cost function: The coefficient of the regularization term in the latter approach 
is equal to the variance of the transformation parameters in the former approach. 

6Note that the transformed patterns may be correlated in parts of the pattern space. 
For example the results of applying the shearing and rotation operations to an infinite 
vertical line are indistinguishable. In general, there may be regions of the pattern space 
for which the action of several different group elements are indistinguishable; that is x' = 
g(x; a) = g(x; (3). However this does not imply that a and (3 are statistically correlated. 
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3.1.1 Unbiased Models 

For unbiased models the regularizer in E( w) assumes a particularly simple form. 
Suppose the network function is rich enough to form an unbiased estimate of the 
least squares regression on t for the un distorted data ensemble. That is, there exists 
a weight value Wo such that 

f(x;wo) = J dt tp(tlx) == E[tlx] (10) 

This is the global minimum for the original error £( w). 

The arguments of section 3 apply here as well. However we can go further. Even 
if there is only a single, isolated weight value for which (10) is satisfied, then to 
O( 0-2 ) the correlation term in the regularizer vanishes. To see this note that by the 
implicit function theorem the modified cost function (9) has its global minimum at 
the new weight 7 

(11) 

At this weight, the network function is no longer the regression on t, but rather 

f(x;wo) = E[tlx] + 0(0-2 ) • (12) 

Substituting (12) into (9), we find that the minimum of (9) is, to 0(0-2 ), at the 
same weight as the minimum of 

t = £ + L.k o-~ JdX p(x) [ oglJ I of (x, w) ] 2 

.=1 0 Q'j Q=O oxlJ 
(13) 

To 0(0-2 ), minimizing (13) is equivalent to minimizing (9). So we regard t as the 
effective cost function. 

The regularization term in (13) is proportional to the average square of the gradient 
of the network function along the direction in the input space generated by the 
lineal' part of g. The quantity inside the square brackets is just the linear part of 
[f (g( X; Q')) - f (x)] from (6). The magnitude of the regularization term is just the 
variance of the distribution of distortion parameters. 

This is precisely the form of the regularizer given by Simard et al. in their tangent 
prop algorithm (Simard et aI, 1992). This derivation shows the equivalence (to 
0(0"2)) between the tangent prop regularizer and the alternative of modifying the 
input distribution. Furthermore, we see that with this equivalence, the constant 
fixing the strengt.h of the regularization term is simply the variance of the distortions 
introduced into the original training set. 

We should stress that the equivalence between the regularizer, and the distortion­
enhanced ensemble in (13) only holds to 0(0-2 ). If one allows the variance of the 

7We assume that the Hessian of £ is nonsingular at woo 
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distortion parameters u 2 to become arbitrarily large in an effort to mock up an 
arbitrarily large regularization term, then the equivalence expressed in (13) breaks 
down since terms of order O( ( 4 ) can no longer be neglected. In addition, if the 
transformations are to be kept small so that the linearization holds (e.g. by re­
stricting the density on a to have support on a small neighborhood of zero), then 
the variance will bounded above. 

3.1.2 Smoothing Regularizers 

In the previous sections we showed the equivalence between modifying the input 
distribution and adding a regularizer to the cost function. We derived this equiv­
alence to illuminate mechanisms for obtaining invariant pattern recognition. The 
technique for dealing with infinitesimal transformations in section §3.1 was used by 
Bishop (1994) to show the equivalence between added input noise and smoothing 
regularizers. Bishop's results, though they preceded our own, are a special case 
of the results presented here. Suppose the group 9 is restricted to translations by 
random vectors g( X; a) = X + a where a is spherically distributed with variance u!. 
Then the regularizer in (13) is 

(14) 

This regularizer penalizes large magnitude gradients in the network function and 
is, as pointed out by Bishop, one of the class of generalized Tikhonov regularizers. 

4 Summary 

We have shown that enhancing the input ensemble by adding examples transformed 
under a group x -? g(x;a), while maintaining the target values, is equivalent to 
adding a regularizer to the original cost function. For unbiased models the reg­
ulatizer reduces to the intuitive form that penalizes the mean squared difference 
between the network output for transformed and untransformed inputs - i.e. the 
error in satisfying the desired invariance. In general the regularizer includes a term 
that measures correlations between the error in fitting the data, and the error in 
satisfying the desired inva.riance. For infinitesimal transformations, the regularizer 
is equivalent (up to terms linear in the variance of the transformation parameters) 
to the tangent prop form given by Simard et a1. (1992), with regularization coef­
ficient equal to the variance of the transformation parameters. In the special case 
that the group transformations are limited to random translations of the input, the 
regularizer reduces to a standard smoothing regularizer. 

\Ve gave conditions under which enhancing the input ensemble and adding the 
intuitive regularizer £ H are equivalent. However tins equivalence is only with regard 
to the optimal weight. We have not compared the training dynamics for the two 
approaches. In particular, it is quite possible that the full regularizer £H + £c 
exhibits different training dynamics from the intuitive form £ H. For the approach 
in which data are added to the input ensemble, one can easily construct datasets 
and distributions p( a) that either increase the condition number of the Hessian, 
or decrease it. Finally, it may be that the intuitive regularizer can have either 
detrimental or positive effects on the Hessian as well. 
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