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Abstract 

This paper outlines a dynamic theory of development and adap­
tation in neural networks with feedback connections. Given in­
put ensemble, the connections change in strength according to an 
associative learning rule and approach a stable state where the 
neuronal outputs are decorrelated . We apply this theory to pri­
mary visual cortex and examine the implications of the dynamical 
decorrelation of the activities of orientation selective cells by the 
intracortical connections. The theory gives a unified and quantita­
tive explanation of the psychophysical experiments on orientation 
contrast and orientation adaptation. Using only one parameter , we 
achieve good agreements between the theoretical predictions and 
the experimental data. 

1 Introduction 

The mammalian visual system is very effective in detecting the orientations of lines 
and most neurons in primary visual cortex selectively respond to oriented lines and 
form orientation columns [1) . Why is the visual system organized as such? We 
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believe that the visual system is self-organized, in both long term development and 
short term adaptation, to ensure the optimal information processing. 

Linsker applied Hebbian learning to model the development of orientation selectiv­
ity and later proposed a principle of maximum information preservation in early 
visual pathways [2]. The focus of his work has been on the feedforward connections 
and in his model the feedback connections are isotropic and unchanged during the 
development of orientation columns; but the actual circuitry of visual cortex in­
volves extensive, columnar specified feedback connections which exist even before 
functional columns appear in cat striate cortex [3]. 

Our earlier research emphasized the important role of the feedback connections in 
the development of the columnar structure in visual cortex. We developed a the­
oretical framework to help understand the dynamics of Hebbian learning in feed­
back networks and showed how the columnar structure originates from symmetry 
breaking in the development of the feedback connections (intracortical, or lateral 
connections within visual cortex) [4]. 

Figure 1 illustrates our theoretical predictions. The intracortical connections break 
symmetry and develop strip-like patterns with a characteristic wave length which 
is comparable to the developed intracortical inhibitory range and the LGN-cortex 
afferent range (left). The feedforward (LGN-cortex) connections develop under the 
influence of the symmetry breaking development of the intracortical connections. 
The developed feedforward connections for each cell form a receptive field which 
is orientation selective and nearby cells have similar orientation preference (right) . 
Their orientations change in about the same period as the strip-like pattern of the 
intracortical connections. 

Figure 1: The results of the development of visual cortex with feedback connections. The 
simulated cortex consists of 48 X 48 neurons, each of which connects to 5 X 5 other cortical 
neurons (left) and receives inputs from 7 X 7 LGN neurons (right). In this figure, white 
inclicates positive connections and black inclicates negative connections. One can see that 
the change of receptive field's orientation (right) is highly correlated with the strip-like 
pattern of intracortical connections (left). 

Many aspects of our theoretical predictions agree qualitatively with neurobiologi­
cal observations in primary visual cortex. Another way to test the idea of optimal 
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information processing or any self-organization theory is through quantitative psy­
chophysical studies. The idea is to look for changes in perception following changes 
in input environments. The psychophysical experiments on orientation illusions 
offer some opportunities to test our theory on orientation selectivity. 

Orientation illusions are the effects that the perceived orientations of lines are af­
fected by the neighboring (in time or space) oriented stimuli, which have been 
observed in many psychophysical experiments and were attributed to the inhibitory 
interactions between channels tuned to different orientations [5]. But there is no uni­
fied and quantitative explanation. Neurophysiological evidences support our earlier 
computational model in which intracortical inhibition plays the role of gain-control 
in orientation selectivity [6]. But in order for the gain-control mechanism to be 
effective to signals of different statistics, the system has to develop and adapt in 
different environments. 

In this paper we examine the implication of the hypothesis that the intracortical 
connections dynamically decorrelate the activities of orientation selective cells, i.e., 
the intracortical connections are actively adapted to the visual environment, such 
that the output activities of orientation selective cells are decorrelated. The dynam­
ics which ensures such decorrelation through associative learning is outlined in the 
next section as the theoretical framework for the development and the adaptation 
of intracortical connections. We only emphasize the feedback connections in the 
following sections and assume that the feedforward connections developed orienta­
tion selectivities based on our earlier works. The quantitative comparisons of the 
theory and the experiments are presented in section 3. 

2 Associative Decorrelation Dynamics 

There are two different kinds of variables in neural networks. One class of variables 
represents the activity of the nerve cells, or neurons. The other class of variables 
describes the synapses, or connections, between the nerve cells. A complete model 
of an adaptive neural system requires two sets of dynamical equations, one for each 
class of variables, to specify the evolution and behavior of the neural system. 

The set of equations describing the change of the state of activity of the neurons is 
dVi 

a-I = -Vi + ~T. .. v.. + 1- (1) dt I L..J I}} I 

j 

in which a is a time constant, Tij is the strength of the synaptic connection from 
neuron j to neuron i, and Ii is the additional feedforward input to the neuron besides 
those described by the feedback connection matrix nj . A second set of equations 
describes the way the synapses change with time due to neuronal activity. The 
learning rule proposed here is 

B dnj = (V,. - V.')!, 
dt I I} 

(2) 

in which B is a time constant and Vi' is the feedback learning signal as described 
in the following. 

The feedback learning signal Vi' is generated by a Hopfield type associative memory 
network: Vi' = Lj T/j Vi , in which T/j is the strength of the associative connection 
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from neuron j to neuron i, which is the recent correlation between the neuronal 
activities Vi and Vj determined by Hebbian learning with a decay term [4] 

,dTfj , 
B dt = -Iij + ViVj (3) 

in which B' is a time constant. The Vi' and T[j are only involved in learning and 
do not directly affect the network outputs. 

It is straight forward to show that when the time constants B > > B' > > a, the 
dynamics reduces to 

dT 
B dt = (1- < VVT » < VIT > (4) 

where bold-faced quantities are matrices and vectors and <> denotes ensemble 
average. It is not difficult to show that this equation has a Lyapunov or "energy" 
function 

L = Tr(1- < VVT »(1- < VVT >f 
which is lower bounded and satisfies 

dL < 0 
dt -

and dL =0 -+­

dt 
dTij 0 I' 11" dt = lor at,) 

(5) 

(6) 

Thus the dynamics is stable. When it is stable, the output activities are decorre­
lated, 

<VVT >= 1 (7) 

The above equation shows that this dynamics always leads to a stable state where 
the neuronal activities are decorrelated and their correlation matrix is orthonormal. 
Yet the connections change in an associative fashion - equation (2) and (3) are 
almost Hebbian. That is why we call it associative decorrelation dynamics. From in­
formation processing point of view, a network, self-organized to satisfy equation (7), 
is optimized for Gaussian input ensembles and white output noises [7]. 

Linear First Order Analysis 

In applying our theory of associative decorrelation dynamics to visual cortex to 
compare with the psychophysical experiments on orientation illusions, the linear 
first-order approximation is used, which is 

T = TO + 6T, 
V = Va +6V, 

TO = 0, 6T ex - < I IT > 
Va = I, 6V = TI (8) 

where it is assumed that the input correlations are small. It is interesting to notice 
that the linear first-order approximation leads to anti-Hebbian feedback connec­
tions: Iij ex - < /i/j > which is guarantteed to be stable around T = 0 [8]. 

3 Quantitative Predictions of Orientation Illusions 

The basic phenomena of orientation illusions are demonstrated in figure 2 (left). 
On the top, is the effect of orientation contrast (also called tilt illusion): within the 
two surrounding circles there are tilted lines; the orientation of a center rectangle 
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appears rotated to the opposite side of its surrounding tilt. Both the two rectan­
gles and the one without surround (at the left-center of this figure) are, in fact, 
exactly same. On the bottom, is the effect of orientation adaptation (also called 
tilt aftereffect): if one fixates at the small circle in one of the two big circles with 
tilted lines for 20 seconds or so and then look at the rectangle without surround, 
the orientation of the lines of the rectangle appears tilted to the opposite side. 

These two effects of orientation illusions are both in the direction of repulsion: the 
apparent orientation of a line is changed to increase its difference from the inducing 
line. Careful experimental measurements also revealed that the angle with the 
inducing line is <"V 100 for maximum orientation adaptation effect [9] but <"V 20 0 for 
orientation contrast [10]. 

1 

Ol..---~-~-""';:"'''''''''---' 
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Stimulus orientation (J (degree) 

Figure 2: The effects of orientation contrast (upper-left) and orientation adaptation (lower­
left) are attributed to feedback connections between cells tuned to different orientations 
(upper-right, network; lower-right, tuning curve). 

Orientation illusions are attributed to the feedback connections between orienta­
tion selective cells. This is illustrated in figure 2 (right). On the top is the network 
of orientation selective cells with feedback connections. Only four cells are shown. 
From the left, they receive orientation selective feedforward inputs optimal at -450 , 

00 ,450 , and 900 , respectively. The dotted lines represent the feedback connections 
(only the connections from the second cell are drawn). On the bottom is the orien­
tation tuning curve of the feedforward input for the second cell, optimally tuned to 
stimulus of 00 (vertical), which is assumed to be Gaussian of width (T = 200 • Be­
cause of the feedback connections, the output of the second cell will have different 
tuning curves from its feedforward input, depending on the activities of other cells. 

For primary visual cortex, we suppose that there are orientation selective neurons 
tuned to all orientations. It is more convenient to use the continuous variable e 
instead of the index i to represent neuron which is optimally tuned to the orientation 
of angle e. The neuronal activity is represented by V(e) and the feedforward input 
to each neuron is represented by I(e). The feedforward input itself is orientation 
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selective: given a visual stimulus of orientation eo, the input is 

J(e) = e-(9-9o)2/q 2 (9) 

This kind of the orientation tuning has been measured by experiments (for refer­
ences, see [6]). Various experiments give a reasonable tuning width around 20° 
«(7" = 20° is used for all the predictions). 

Predicted Orientation Adaptation 

For the orientation adaptation to stimulus of angle eo, substituting equation (9) 
into equation (8), it is not difficult to derive that the network response to stimulus 
of angle 0 (vertical) is changed to 

V(e) = e_92 / q2 _ ae-(9-9o )2/q 2 e-9~/2q2 (10) 

in which (7" is the feedforward tuning width chosen to be 20° and a is the parameter 
of the strength of decorrelation feedback. 

The theoretical curve of perceived orientation ¢(eo) is derived by assuming the 
maximum likelihood of the the neural population, i.e., the perceived angle ¢ is the 
angle at which Vee) is maximized. It is shown in figure 3 (right). The solid line is 
the theoretical curve and the experimental data come from [9] (they did not give 
the errors, the error bars are of our estimation,...., 0.2°). The parameter obtained 
through X2 fit is the strength of decorrelation feedback: a = 0.42. 
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Figure 3: Quantitative comparison of the theoretical predictions with the experimental 
data of orientation contrast (left) and orientation adaptation (right). 

It is very interesting that we can derive a relationship which is independent of the 
parameter of the strength of decorrelation feedback a, 

(eo - ¢m)(3eo - 2¢m) = (7"2 (11) 

in which eo is the adaptation angle at which the tilt aftereffect is most significant 
and ¢m is the perceived angle. 

Predicted Orientation Contrast 

For orientation contrast, there is no specific adaptation angle, i.e., the network has 
developed in an environment of all possible angles. In this case, when the surround 
is of angle eo, the network response to a stimulus of angle e1 is 

Vee) = e-(9-91)2/q 2 _ ae-(9-9o)2/3q2 (12) 
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in which fr and a has the same meaning as for orientation adaptation. Again assum­
ing the maximum likelihood, ¢(eo), the stimulus angle e1 at which it is perceived 
as angle 0, is derived and shown in figure 3 (left). The solid line is the theoretical 
curve and the experimental data come from [10] and their estimated error is "" 0.20. 
The parameter obtained through X 2 fit is the strength of decorrelation feedback: 
a = 0.32. 

We can derive the peak position eo, i.e., the surrounding angle eo at which the 
orientation contrast is most significant, 

~e~ = fr2 (13) 
3 

For fr = 200 , one immediately gets eo = 240 • This is in good agreement with 
experiments, most people experience the maximum effect of orientation contrast 
around this angle. 

Our theory predicts that the peak position of the surround angle for orientation 
contrast should be constant since the orientation tuning width fr is roughly the 
same for different human observers and is not going to change much for different 
experimental setups. But the peak value of the perceived angle is not constant since 
the decorrelation feedback parameter a is not necessarily same, indeed, it could be 
quite different for different human observers and different experimental setups. 

4 Discussion 

First, we want to emphasis that in all the comparisons, the same tuning width fr is 
used and the strength of decorrelation feedback a is the only fit parameter. It does 
not take much imagination to see that the quantitative agreements between the 
theory and the experiments are good. Further more, we derived the relationships 
for the maximum effects, which are independent of the parameter a and have been 
partially confirmed by the experiments. 

Recent neurophysiological experiments revealed that the surrounding lines did in­
fluence the orientation selectivity of cells in primary visual cortex of the cat [11]. 
Those single cell experiments land further support to our theory. But one should 
be cautioned that the cells in our theory should be considered as the average over 
a large population of cells in cortex. 

The theory not only explains the first order effects which are dominant in angle 
range of 00 to 500 , as shown here, but also accounts for the second order effects 
which can be seen in 500 to 900 range, where the sign of the effects is reversed. 
The theory also makes some predictions for which not much experiment has been 
done yet, for example, the prediction about how orientation contrast depends on 
the distance of surrounding stimuli from the test stimulus [7]. 

Finally, this is not merely a theory for the development and the adaptation of 
orientation selective cells, it can account for effect such as human vision adaptation 
to colors as well [7]. We can derive the same equation as Atick etal [12] which agrees 
with the experiment on the appearance of color hue after adaptation. We believe 
that future psychophysical experiments could give us more quantitative results to 
further test our theory and help our understanding of neural systems in general. 
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