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Understanding knowledge representations in neural nets has been a 
difficult problem. Principal components analysis (PCA) of 
contributions (products of sending activations and connection weights) 
has yielded valuable insights into knowledge representations, but much 
of this work has focused on the correlation matrix of contributions. The 
present work shows that analyzing the variance-covariance matrix of 
contributions yields more valid insights by taking account of weights. 

1 INTRODUCTION 
The knowledge representations learned by neural networks are usually difficult to 
understand because of the non-linear properties of these nets and the fact that knowledge is 
often distributed across many units. Standard network analysis techniques, based on a 
network's connection weights or on its hidden unit activations, have been limited. Weight 
diagrams are typically complex and weights vary across mUltiple networks trained on the 
same problem. Analysis of activation patterns on hidden units is limited to nets with a 
single layer of hidden units without cross connections. 

Cross connections are direct connections that bypass intervening hidden unit layers. They 
increase learning speed in static networks by focusing on linear relations (Lang & 
Witbrock, 1988) and are a standard feature of generative algorithms such as cascade­
correlation (Fahlman & Lebiere, 1990). Because such cross connections do so much of 
the work, analyses that are restricted to hidden unit activations furnish only a partial 
picture of the network's knowledge. 

Contribution analysis has been shown to be a useful technique for multi-layer, cross 
connected nets. Sanger (1989) defined a contribution as the product of an output weight, 
the activation of a sending unit, and the sign of the output target for that input. Such 
contributions are potentially more informative than either weights alone or hidden unit 
activations alone since they take account of both weight and sending activation. Shultz 
and Elman (1994) used PCA to reduce the dimensionality of such contributions in several 
different types of cascade-correlation nets. Shultz and Oshima-Takane (1994) demonstrated 
that PCA of unscaled contributions produced even better insights into cascade-correlation 
solutions than did comparable analyses of contributions scaled by the sign of output 
targets. Sanger (1989) had recommended scaling contributions by the signs of output 
targets in order to determine whether the contributions helped or hindered the network's 
solution. But since the signs of output targets are only available to networks during error 
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correction learning, it is more natural to use unscaled contributions in analyzing 
knowledge representations. 

There is an issue in PCA about whether to use the correlation matrix or the variance­
covariance matrix. The correlation matrix contains Is in the diagonal and Pearson 
correlation coefficients between contributions off the diagonal. This has the effect of 
standardizing the variables (contributions) so that each has a mean of 0 and standard 
deviation of 1. Effectively, this ensures that the PCA of a correlation matrix exploits 
variation in input activation patterns but ignores variation in connection weights (because 
variation in connection weights is eliminated as the contributions are standardized). 

Here, we report on work that investigates whether more useful insights into network 
knowledge structures can be revealed by PCA of un standardized contributions. To do this, 
we apply PCA to the variance-covariance matrix of contributions. The variance-covariance 
matrix has contribution variances along the diagonal and covariances between 
contributions off the diagonal. Taking explicit account of the variation in connection 
weights in this way may produce a more valid picture of the network's knowledge. 

We use some of the same networks and problems employed in our earlier work (Shultz & 
Elman, 1994; Shultz & Oshima-Takane, 1994) to facilitate comparison of results. The 
problems include continuous XOR, arithmetic comparisons involving addition and 
mUltiplication, and distinguishing between two interlocking spirals. All of the nets were 
generated with the cascade-correlation algorithm (Fahlman & Lebiere, 1990). 

Cascade-correlation begins as a perceptron and recruits hidden units into the network as it 
needs them in order to reduce error. The recruited hidden unit is the one whose activations 
correlate best with the network's current error. Recruited units are installed in a cascade, 
each on a separate layer and receiving input from the input units and from any previously 
existing hidden units. We used the default values for all cascade-correlation parameters. 

The goal of understanding knowledge representations learned by networks ought to be 
useful in a variety of contexts. One such context is cognitive modeling, where the ability 
of nets to merely simulate psychological phenomena is not sufficient (McCloskey, 
1991). In addition, it is important to determine whether the network representations bear 
any systematic relation to the representations employed by human subjects . 

2 PCA OF CONTRIBUTIONS 
Sanger's (1989) original contribution analysis began with a three-dimensional array of 
contributions (output unit x hidden unit x input pattern). In contrast, we start with a two­
dimensional output weight x input pattern array of contributions. This is more efficient 
than the slicing technique used by Sanger to focus on particular output or hidden units and 
still allows identification of the roles of specific contributions (Shultz & Elman, 1994; 
Shultz & Oshima-Takane, 1994). 

We subject the variance-covariance matrix of contributions to PCA in order to identify the 
main dimensions of variation in the contributions (Jolliffe, 1986). A component is a line 
of best fit to a set of data points in multi-dimensional space. The goal of PCA is to 
summarize a multivariate data set with a relatively small number of components by 
capitalizing on covariance among the variables (in this case, contributions). 

We use the scree test (Cattell, 1966) to determine how many components are useful to 
include in the analysis. Varimax rotation is applied to improve the interpretability of the 
solution. Component scores are plotted to identify the function of each component 

3 APPLICATION TO CONTINUOUS XOR 
The classical binary XOR problem does not have enough training patterns to make 
contribution analysis worthwhile. However, we constructed a continuous version of the 
XOR problem by dividing the input space into four quadrants. Starting from 0.1, input 
values were incremented in steps of 0.1, producing 100 x, y input pairs that can be 
partitioned into four quadrants of the input space. Quadrant a had values of x less than 
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0.55 combined with values of y above 0.55. Quadrant b had values of x and y greater than 
0.55. Quadrant c had values of x and y less than 0.55. Quadrant d had values of x greater 
than 0.55 combined with values of y below 0.55. Similar to binary XOR, problems from 
quadrants a and d had a positive output target (0.5) for the net, whereas problems from 
quadrants band c had a negative output target (-0.5). There was a single output unit with 
a sigmoid activation. 

Three cascade-correlation nets were trained on continuous XOR. Each of these nets 
generated a unique solution, recruiting five or six hidden units and taking from 541 to 765 
epochs to learn to correctly classify all of the input patterns. Generalization to test 
patterns not in the training set was excellent. PCA of unscaled, unstandardized 
contributions yielded three components. A plot of rotated component scores for the 100 
training patterns of net 1 is shown in Figure 1. The component scores are labeled 
according to their respective quadrant in the input space. Three components are required to 
account for 96.0% of the variance in the contributions. 

Figure 1 shows that component 1, with 44.3% of the variance in contributions, has the 
role of distinguishing those quadrants with a positive output target (a and d) from those 
with a negative output target (b and c). This is indicated by the fact that the black shapes 
are at the top of the component space cube in Figure 1 and the white shapes are at the 
bottom. Components 2 and 3 represent variation along the x and y input dimensions, 
respectively. Component 2 accounted for 26.1 % of the variance in contributions, and 
component 3 accounted for 25.6% of the variance in contributions. Input pairs from 
quadrants b and d (square shapes) are concentrated on the negative end of component 2, 
whereas input pairs from quadrants a and c (circle shapes) are concentrated on the positive 
end of component 2. Similarly, input pairs from quadrants a and b cluster on the negative 
end of component 3, and input pairs from quadrants c and d cluster on the positive end of 
component 3. Although the network was not explicitly trained to represent the x and y 
input dimensions, it did so as an incidental feature of its learning the distinction between 
quadrants a and d vs. quadrants band c. Similar results were obtained from the other two 
nets learning the continuous XOR problem. 

In contrast, PCA of the correlation matrix from these nets had yielded a somewhat less 
clear picture with the third component separating quadrants a and d from quadrants b and c, 
and the first two components representing variation along the x and y input dimensions 
(Shultz & Oshima-Takane, 1994). PCA of the correlation matrix of scaled contributions 
had performed even worse, with plots of component scores indicating interactive 
separation of the four quadrants, but with no clear roles for the individual components 
(Shultz & Elman, 1994). 

Standardized, rotated component loadings for net 1 are plotted in Figure 2. Such plots can 
be examined to determine the role played by each contribution in the network. For 
example, hidden units 2, 3, and 4 all playa major role in the job done by component 1, 
distinguishing positive from negative outputs. 

4 APPLICATION TO COMPARATIVE ARITHMETIC 
Arithmetic comparison requires a net to conclude whether a sum or a product of two 
integers is greater than, less than, or equal to a comparison integer. Several psychological 
simulations have used neural nets to make additive and multiplicative comparisons and 
this has enhanced interest in this type of problem (McClelland, 1989; Shultz, Schmidt, 
Buckingham, & Mareschal, in press). 

The first input unit coded the type of arithmetic operation to be performed: 0 for addition 
and 1 for multiplication. Three additional linear input units encoded the integers. Two of 
these input units each coded a randomly selected integer in the range of 0 to 9, inclusive; 
another input unit coded a randomly selected comparison integer. For addition problems, 
comparison integers ranged from 0 to i9, inclusive; for multiplication, comparison 
integers ranged from 0 to 82, inclusive. Two sigmoid output units coded the results of 
the comparison operation. Target outputs of 0.5, -0.5 represented a greater than result, 
targets of -0.5, 0.5 represented less than, and targets of 0.5,0.5 represented equal to. 
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Figure 1. Rotated component scores for a continuous XOR net. Component scores for the 
x, y input pairs in quadrant a are labeled with black circles, those from quadrant b with 
white squares, those from quadrant c with white circles, and those from quadrant d with 
black squares. The network's task is to distinguish pairs from quadrants a and d (the black 
shapes) from pairs from quadrants b and c (the white shapes). Some of the white shapes 
appear black because they are so densely packed, but all of the truly black shapes are 
relatively high in the cube. 
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Figure 2. Standardized, rotated component loadings for a continuous XOR net. Rotated 
loadings were standardized by dividing them by the standard deviation of the respective 
contribution scores. 
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The training patterns had 100 addition and 100 multiplication problems, randomly 
selected, with the restriction that 45 of each had correct answers of greater than, 45 of each 
had correct answers of less than, and 10 of each had correct answers of equal to. These 
constraints were designed to reduce the natural skew of comparative values in the high 
direction on multiplication problems. 

We ran three nets for 1000 epochs each, at which point they were very close to mastering 
the training patterns. Either seven or eight hidden units were recruited along the way. 
Generalization to previously unseen test problems was very accurate. Four components 
were sufficient to account for most the variance in un standardized contributions, 88.9% in 
the case of net 1. 

Figure 3 displays the rotated component scores for the first two components of net 1. 
Component I, accounting for 51.1 % of the variance, separated problems with greater than 
answers from problems with less than answers, and located problems with equal to 
answers in the middle, at least for addition problems. Component 2, with 20.2% of the 
variance, clearly separated multiplication from addition. Contributions from the first input 
unit were strongly associated with component 2. Similar results obtained for the other 
two nets. 

Components 3 and 4, with 10.6% and 7.0% of the variance, were sensitive to variation in 
the second and third inputs, respectively. This is supported by an examination of the 
mean input values of the 20 most extreme component scores on these two components. 
Recall that the second and third inputs coded the two integers to be added or multiplied. 
The negative end of component 3 had a mean second input value of 8.25; the positive end 
of this component had a mean second input value of 0.55. Component 4 had mean third 
input value of 2.00 on the negative end and 7.55 on the positive end. 

In contrast, PCA of the correlation matrix for these nets had yielded a far more clouded 
picture, with the largest components focusing on input variation and lesser components 
doing bits and pieces of the separation of answer types and operations in an interactive 
manner (ShUltz & Oshima-Takane, 1994). Problems with equal to answers were not 
isolated by any of the components. PCA of scaled contributions had produced three 
components that interactively separated the three answer types and operations, but failed 
to represent variation in input integers (ShUltz & Elman, 1994). Essentially similar 
advantages for using the variance-covariance matrix were found for nets learning either 
addition alone or multiplication alone. 

5 APPLICATION TO THE TWO-SPIRALS PROBLEM 
The two-spirals problem requires a particularly difficult discrimination and a large number 
of hidden units. The input space is defined by two interlocking spirals that wrap around 
their origin three times. There are two sets of 97 real-valued x, y pairs, with each set 
representing one of the spirals, and a single sigmoid output unit coded for the identity of 
the spiral. Our three nets took between 1313 and 1723 epochs to master the distinction, 
and recruited from 12 to 16 hidden units. All three nets generalized well to previously 
unseen input pairs on the paths of the two spirals. 

PCA of the variance-covariance matrix for net 1 revealed that six components accounted 
for a total of 97.9% of the variance in contributions. The second and fourth of these 
components together distinguished one spiral from the other, with 20.7% and 9.8% of the 
variance respectively. Rotated component scores for these two components are plotted in 
Figure 4. A diagonal line drawn on Figure 4 from coordinates -2,2 to 2, -2 indicates that 
11 points from each spiral were misclassified by components 2 and 4. This is only 11.3% 
of the data points in the training patterns. The fact that the net learned all of the training 
patterns implies that these exceptions were picked up by other components. 

Components 1 and 6, with 40.7% and 6.4% of the variance, were sensitive to variation in 
the x and y inputs, respectively. Again, this was confirmed by the mean input values of 
the 20 most extreme component scores on these two components. On component I, the 
negative end had a mean x value of 3.55 and the positive end had a mean y value of -3.55. 
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Figure 3. Rotated component scores for an arithmetic comparison net. Greater than 
problems are symbolized by circles, less than problems by squares, addition by white 
shapes, and multiplication by black shapes. For equal to problems only, addition is 
represented by + and multiplication by X. Although some densely packed white shapes 
may appear black, they have no overlap with truly black shapes. All of the black squares 
are concentrated around coordinates -1, -1. 
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Figure 4. Rotated component scores for a two-spirals net. Squares represent data points 
from spiral 1, and circles represent data points from spiral 2. 
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On component 6, the negative end had a mean x value of 2.75 and the positive end had a 
mean y value of -2.75. The skew-symmetry of these means is indicative of the perfectly 
symmetrical representations that cascade-correlation nets achieve on this highly 
symmetrical problem. Every data point on every component has a mirror image negative 
with the opposite signed component score on that same component. This -x, -y mirror 
image point is always on the other spiral. Other components concentrated on particular 
regions of the spirals. The other two nets yielded essentially similar results. 

These results can be contrasted with our previous analyses of the two-spirals problem, 
none of which succeeded in showing a clear separation of the two spirals. PCAs based on 
scaled (Shultz & Elman, 1994) or unscaled (Shultz & Oshima-Takane, 1994) correlation 
matrices showed extensive symmetries but never a distinction between one spiral and 
another.1 Thus, although it was clear that the nets had encoded the problem's inherent 
symmetries, it was still unclear from previous work how the nets used this or other 
information to distinguish points on one spiral from points on the other spiral. 

6 DISCUSSION 

607 

On each of these problems, there was considerable variation among network solutions, as 
revealed, for example, by variation in numbers of hidden units recruited and signs and 
sizes of connection weights. In spite of such variation, the present technique of applying 
peA to the variance-covariance matrix of contributions yielded results that are sufficiently 
abstract to characterize different nets learning the same problem. The knowledge 
representations produced by this analysis clearly identify the essential information that the 
net is being trained to utilize as well as more incidental features of the training patterns 
such as the nature of the input space. 

This research strengthens earlier conclusions that PCA of network contributions is a 
useful technique for understanding network performance (Sanger, 1989), including 
relatively intractable multi-level cross connected nets (Shultz & Elman, 1994; Shultz & 
Oshima-Takane, 1994). However, the current study underscores the point that there are 
several ways to prepare a contribution matrix for PCA, not all of which yield equally 
valid or useful results. Rather than starting with a three dimensional matrix of output unit 
x hidden unit x input pattern and focusing on either one output unit at a time or one 
hidden unit at a time (Sanger, 1989), it is preferable to collapse contributions into a two 
dimensional matrix of output weight x input pattern. The latter is not only more 
efficient, but yields more valid results that characterize the network as a whole, rather than 
small parts of the network. 

Also, rather than scaling contributions by the sign of the output target (Sanger, 1989), it 
is better to use unsealed contributions. Unsealed contributions are not only more realistic, 
since the network has no knowledge of output targets during its feed-forward phase, but 
also produce clearer interpretations of the nefs knowledge representations (Shultz & 
Oshima-Takane, 1994). The latter claim is particularly true in terms of sensitivity to 
input dimensions and to operational distinctions between adding and multiplying. Plots of 
component scores based on unscaled contributions are typically not as dense as those 
based on sealed contributions but are more revealing of the network's knowledge. 

Finally, rather than applying peA to the correlation matrix of contributions, it makes 
more sense to apply it to the variance-covariance matrix. As noted in the introduction, 
using the correlation matrix effectively standardizes the contributions to have identical 
means and variances, thus obseuring the role of network connection weights. The present 
results indicate much clearer knowledge representations when the variance-covariance 
matrix is used since connection weight information is explicitly retained. Matrix 
differences were especially marked on the more difficult problems, such as two-spirals, 
where the only peAs to reveal how nets distinguished the spirals were those based on 

1 Results from un scaled contributions on the two-spirals problem were not actually 
presented in Shultz & Oshima-Takane (1994) since they were not very clear. 
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variance-covariance matrices. But the relative advantages of using the variance-covariance 
matrix were evident on the easier problems too. 

There has been recent rapid progress in the study of the knowledge representations leamed 
by neural nets. Feed-forward nets can be viewed as function approximators for relating 
inputs to outputs. Analysis of their knowledge representations should reveal how inputs 
are encoded and transformed to produce the correct outputs. PCA of network contributions 
sheds light on how these function approximations are done. Components emerging from 
PCA are orthonormalized ingredients of the transformations of inputs that produce the 
correct outputs. Thus, PCA helps to identify the nature of the required transformations. 

Further progress might be expected from combining PCA with other matrix 
decomposition techniques. Constrained PCA uses external information to decompose 
multivariate data matrices before applying PCA (Takane & Shibayama, 1991). 

Analysis techniques emerging from this research will be useful in understanding and 
applying neural net research. Component loadings, for example, could be used to predict 
the results of lesioning experiments with neural nets. Once the role of a hidden unit has 
been identified by virtue of its association with a particular component, then one could 
predict that lesioning this unit would impair the function served by the component. 
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