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Abstract 

Most of the common techniques for estimating conditional prob­
ability densities are inappropriate for applications involving peri­
odic variables. In this paper we introduce three novel techniques 
for tackling such problems, and investigate their performance us­
ing synthetic data. We then apply these techniques to the problem 
of extracting the distribution of wind vector directions from radar 
scatterometer data gathered by a remote-sensing satellite. 

1 INTRODUCTION 

Many applications of neural networks can be formulated in terms of a multi-variate 
non-linear mapping from an input vector x to a target vector t. A conventional 
neural network approach , based on least squares for example, leads to a network 
mapping which approximates the regression of t on x. A more complete description 
of the data can be obtained by estimating the conditional probability density of t, 
conditioned on x , which we write as p(tlx). Various techniques exist for modelling 
such densities when the target variables live in a Euclidean space. However, a num­
ber of potential applications involve angle-like output variables which are periodic 
on some finite interval (usually chosen to be (0,271")). For example, in Section 3 
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we consider the problem of determining the wind direction (a periodic quantity) 
from radar scatterometer data obtained from remote sensing measurements. Most 
of the existing techniques for conditional density estimation cannot be applied in 
such cases. 

A common technique for unconditional density estimation is based on mixture mod­
els of the form 

m 

pet) = L Cki¢i(t) (1) 
i=l 

where Cki are called mixing coefficients, and the kernel functions ¢i(t) are frequently 
chosen to be Gaussians. Such models can be used as the basis of techniques for con­
ditional density estimation by allowing the mixing coefficients, and any parameters 
governing the kernel functions, to be general functions of the input vector x. This 
can be achieved by relating these quantities to the outputs of a neural network 
which takes x as input, as shown in Figure 1. Such an approach forms the basis of 

conditional 
probability 

density n p(tlx) 

1\ 
1\ 
1\ 

parameter (> z 
vector U 

mixture 
model 

neural 
network 

Figure 1: A general framework for conditional density estimation 
is obtained by using a feed-forward neural network whose outputs 
determine the parameters in a mixture density model. The mixture 
model then represents the conditional probability density of the 
target variables, conditioned on the input vector to the network. 

the 'mixture of experts' model (Jacobs et al., 1991) and has also been considered by 
a number of other authors (White, 1992; Bishop, 1994; Lui, 1994). In this paper we 
introduce three techniques for estimating conditional densities of periodic variables, 
based on extensions of the above formalism for Euclidean variables. 
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2 DENSITY ESTIMATION FOR PERIODIC VARIABLES 

In this section we consider three alternative approaches to estimating the conditional 
density p(Blx) of a periodic variable B, conditioned on an input vector x. They are 
based respectively on a transformation to an extended domain representation, the 
use of adaptive circular normal kernel functions, and the use of fixed circular normal 
kernels. 

2.1 TRANSFORMATION TO AN EXTENDED VARIABLE 
DOMAIN 

The first technique which we consider involves finding a transformation from the 
periodic variable B E (0,27r) to a Euclidean variable X E (-00,00), such that stan­
dard techniques for conditional density estimation can be applied in X-space. In 
particular, we seek a conditional density function p(xlx) which is to be modelled 
using a conventional Gaussian mixture approach as described in Section 1. Consider 
the transformation 

00 

p(Blx) = L p(B + L27rlx) (2) 
L=-oo 

Then it is clear by construction that the density model on the left hand side satisfies 
the periodicity requirement p(B + 27rlx) = p(Blx). Furthermore, if the density 
function p(xlx) is normalized, then we have 

{21f 
Jo p(Blx) dB = 

(3) 

and so the corresponding periodic density p(Olx) will also be normalized. We now 
model the density function p(xlx) using a mixture of Gaussians of the form 

m 

p(xlx) = L fri(X)4>i(xlx) (4) 
i=l 

where the kernel functions are given by 

1 ( {X - Xi(X)P) 
4>i(xlx) = (27r)1/2Uj(x) exp - 2u;(x) (5) 

and the parameters fri(X), Uj(x) and Xi(X) are determined by the outputs of a 
feed-forward network. In particular, the mixing coefficients frj(x) are governed by a 
'softmax' activation function to ensure that they lie in the range (0,1) and sum to 
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unity; the width parameters O'i(X) are given by the exponentials ofthe corresponding 
network outputs to ensure their positivity; and the basis function centres Xi(X) are 
given directly by network output variables. 

The network is trained by maximizing the likelihood function, evaluated for set of 
training data, with respect to the weights and biases in the network. For a training 
set consisting of N input vectors xn and corresponding targets (r, the likelihood is 
given by 

N 

.c = II peon Ixn)p(xn) (6) 
n=l 

where p(x) is the unconditional density of the input data. Rather than work with .c 
directly, it is convenient instead to minimize an error function given by the negative 
log of the likelihood. Making use of (2) we can write this in the form 

E = -In.c ~ - 2: In 2:P'(on + L271'1xn) (7) 
n L 

where we have dropped the term arising from p(x) since it is independent of the 
network weights. This expression is very similar to the one which arises if we 
perform density estimation on the real axis, except for the extra summation over 
L, which means that the data point on recurs at intervals of 271' along the x-axis. 
This is not equivalent simply to replicating the data, however, since the summation 
over L occurs inside the logarithm, rather than outside as with the summation over 
data points n. 

In a practical implementation, it is necessary to restrict the summation over L. For 
the results presented in the next section, this summation was taken over 7 complete 
periods of 271' spanning the range (-771', 771'). Since the Gaussians have exponentially 
decaying tails, this represents an extremely good approximation in almost all cases, 
provided we take care in initializing the network weights so that the Gaussian 
kernels lie in the central few periods. Derivatives of E with respect to the network 
weights can be computed using the rules of calculus, to give a modified form of 
back-propagation. These derivatives can then be used with standard optimization 
techniques to find a minimum of the error function. (The results presented in the 
next section were obtained using the BFGS quasi-Newton algorithm). 

2.2 MIXTURES OF CIRCULAR NORMAL DENSITIES 

The second approach which we introduce is also based on a mixture of kernel func­
tions of the form (1), but in this case the kernel functions themselves are periodic, 
thereby ensuring that the overall density function will be periodic. To motivate this 
approach, consider the problem of modelling the distribution of a velocity vector 
v in two dimensions (this arises, for example, in the application considered in Sec­
tion 3). Since v lives in a Euclidean plane, we can model the density function p(v) 
using a mixture of conventional spherical Gaussian kernels, where each kernel has 
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the form 

( ) 1 ({ Vx - flx F {V y - fly F ) 
¢ Vx , Vy = 211"cr2 exp 2cr2 - 2cr2 (8) 

where (vx , v y ) are the Cartesian components of v, and (flx, fly) are the components 
of the center I-' of the kernel. From this we can extract the conditional distribution 
of the polar angle () of the vector v, given a value for v = I/vll. This is easily done 
with the transformation Vx = v cos (), Vy = v sin (), and defining ()o to be the polar 
angle of 1-', so that flx = fl cos ()o and fly = fl sin ()o, where fl = 111-'11· This leads to a 
distribution which can be written in the form 

1 
¢(()) = (A) exp {A cos(() - ()on 

211"10 
(9) 

where the normalization coefficient has been expressed in terms of the zeroth order 
modified Bessel function of the first kind, Io(A) . The distribution (9) is known as a 
circular normal or von Mises distribution (Mardia, 1972) . The parameter A (which 
depends on v in our derivation) is analogous to the (inverse) variance parameter in a 
conventional normal distribution. Since (9) is periodic, we can construct a general 
representation for the conditional density of a periodic variable by considering a 
mixture of circular normal kernels, with parameters given by the outputs of a neural 
network. The weights of the network can again be determined by maximizing the 
likelihood function defined over a set of training data. 

2.3 FIXED KERNELS 

The third approach introduced here is again based on a mixture model in which 
the kernel functions are periodic, but where the kernel parameters (specifying their 
width and location) are fixed. The only adaptive parameters are the mixing coeffi­
cients, which are again determined by the outputs of a feed-forward network having 
a softmax final-layer activation function. Here we consider a set of equally-spaced 
circular normal kernels in which the width parameters are chosen to give a mod­
erate degree of overlap between the kernels so that the resulting representation for 
the density function will be reasonably smooth. Again, a maximum likelihood for­
malism is employed to train the network. Clearly a major drawback of fixed-kernel 
methods is that the number of kernels must grow exponentially with the dimen­
sionality of the output space. For a single output variable, however , they can be 
regarded as practical techniques. 

3 RESULTS 

In order to test and compare the methods introduced above, we first consider a 
simple problem involving synthetic data, for which the true underlying distribution 
function is known . This data set is intended to mimic the central properties of the 
real data to be discussed in the next section. It has a single input variable x and an 
output variable () which lies in the range (0,211"). The distribution of () is governed 
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by a mixture of two triangular functions whose parameters (locations and widths) 
are functions of x. Here we present preliminary results from the application of the 
method introduced in section 2.1 (involving the transformation to Euclidean space) 
to this data. Figure 2 shows a plot of the reconstructed conditional density in both 
the extended X variable, and in the reconstructed polar variable (), for a particular 
value of the input variable x . 
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Figure 2: The left hand plot shows the predicted density (solid 
curve) together with the true density (dashed curve) in the ex­
tended X space. The right hand plot shows the corresponding den­
sities in the periodic () space. In both cases the input variable is 
fixed at x = 0.5. 

0.5 

One of the original motivations for developing the techniques described in this paper 
was to provide an effective, principled approach to the analysis of radar scatterome­
ter data from satellites such as the European Remote Sensing Satellite ERS-I. This 
satellite is equipped with three C-band radar antennae which measure the total 
backscattered power (called 0"0) along three directions relative to the satellite track, 
as shown in Figure 3. When the satellite passes over the ocean, the strengths of the 
backscattered signals are related to the surface ripples of the water (on length-scales 
of a few cm.) which in turn are determined by the low level winds. Extraction of 
the wind speed and direction from the radar signals represents an inverse problem 
which is typically multi-valued. For example, a wind direction of (}1 will give rise to 
similar radar signals to a wind direction of (}1 + 1r. Often, there are additional such 
'aliases' at other angles . A conventional neural network approach to this problem, 
based on least-squares, would predict wind directions which were given by condi­
tional averages of the target data. Since the average of several valid wind directions 
is typically not itself a valid direction, such an approach would clearly fail. Here 
we aim to extract the complete distribution of wind directions (as a function of the 
three 0"0 values and on the angle of incidence of the radar beam) and hence avoid 
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Figure 3: Schematic illustration of the ERS-l satellite showing the 
footprints of the three radar scatterometers. 
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such difficulties. This approach also provides the most complete information for 
the next stage of processing (not considered here) which is to 'de-alias' the wind 
directions to extract the most probable overall wind field. 

A large data set of ERS-l measurements, spanning a wide range of meteorological 
conditions, has been assembled by the European Space Agency in collaboration 
with the UK Meteorological Office. Labelling of the data set was performed using 
wind vectors from the Meteorological Office Numerical Weather Prediction code. 
An example of the results from the fixed-kernel method of Section 2.3 are presented 
in Figure 4. This clearly shows the existence of a primary alias at an angle of 1r 

relative to the principal direction, as well as secondary aliases at ±1r /2. 
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Figure 4: An example of the results obtained with the fixed-kernel 
method applied to data from the ERS-1 satellite. As well as the 
primary wind direction, there are aliases at 1r and ±1r /2. 
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