
PREDICTIVE CODING WITH
NEURAL NETS: APPLICATION TO

TEXT COMPRESSION

J iirgen Schmidhuber

Fakultat fiir Informatik
Technische Universitat Miinchen

80290 Miinchen, Germany

Abstract

Stefan Heil

To compress text files, a neural predictor network P is used to ap­
proximate the conditional probability distribution of possible "next
characters", given n previous characters. P's outputs are fed into
standard coding algorithms that generate short codes for characters
with high predicted probability and long codes for highly unpre­
dictable characters. Tested on short German newspaper articles,
our method outperforms widely used Lempel-Ziv algorithms (used
in UNIX functions such as "compress" and "gzip").

1048 liirgen Schmidhuber, Stefan Heil

1 INTRODUCTION

The method presented in this paper is an instance of a strategy known as "predic­
tive coding" or "model-based coding". To compress text files, a neural predictor
network P approximates the conditional probability distribution of possible "next
characters", given n previous characters. P's outputs are fed into algorithms that
generate short codes for characters with low information content (characters with
high predicted probability) and long codes for characters conveying a lot of infor­
mation (highly unpredictable characters) [5]. Two such standard coding algorithms
are employed: Huffman Coding (see e.g. [1]) and Arithmetic Coding (see e.g. [7]).

With the off-line variant of the approach, P's training phase is based on a set F
of training files. After training, the weights are frozen. Copies of P are installed
at all machines functioning as message receivers or senders. From then on, P is
used to encode and decode unknown files without being changed any more. The
weights become part of the code of the compression algorithm. Note that the
storage occupied by the network weights does not have to be taken into account to
measure the performance on unknown files - just like the code for a conventional
data compression algorithm does not have to be taken into account.

The more sophisticated on-line variant of our approach will be addressed later.

2 A PREDICTOR OF CONDITIONAL PROBABILITIES

Assume that the alphabet contains k possible characters Zl, Z2, •.• , Z1c. The (local)
representation of Zi is a binary k-dimensional vector r(Zi) with exactly one non-zero
component (at the i-th position). P has nk input units and k output units. n is
called the "time-window size". We insert n default characters Zo at the beginning
of each file. The representation of the default character, r(zo), is the k-dimensional
zero-vector. The m-th character of file f (starting from the first default character)
is called efn.

For all f E F and all possible m > n, P receives as an input

r(e;"_n) 0 r(e;"_n+l) 0 ... 0 r(c!n_l), (1)

where 0 is the concatenation operator, for vectors. P produces as an output Pin,
a k-dimensional output vector. Using back-propagation [6][2][3][4], P is trained to
mmlIDlze

~ L L II r(c!n) - pin 112 .
jEFm>n

(2)

Expression (2) is minimal if pin always equals

E(r(efn) I e;"_n,·· ·,c!n-l), (3)

the conditional expectation of r(efn), given r(e;"_n) ore e;"_n+1)o . . . or(c!n-l). Due
to the local character representation, this is equivalent to (Pin); being equal to the

Predictive Coding with Neural Nets 1049

conditional probability

(4)

for all / and for all appropriate m> n, where (P,{Jj denotes the j-th component
of the vector P/n.

In general, the (P/n)i will not quite match the corresponding conditional probabili­
ties. For normalization purposes, we define

PI (.) _ (P/n)i
m 1 - j: f·

L:j=I(Pm)j

No normalization is used during training, however.

3 HOW TO USE THE PREDICTOR FOR
COMPRESSION

(5)

We use a standard procedure for predictive coding. With the help of a copy of
P, an unknown file / can be compressed as follows: Again, n default characters
are inserted at the beginning. For each character cfn (m> n), the predictor emits
its output P/n based on the n previous characters. There will be a k such that
cfn = Zj:. The estimate of P(cfn = Zj: I c!n-n, ... , Crn-l) is given by P/n(k). The
code of cfn, code(cfn), is generated by feeding P/n (k) into the Huffman Coding
algorithm (see below), or, alternatively, into the Arithmetic Coding algorithm (see
below). code(cfn) is written into the compressed file. The basic ideas of both coding
algorithms are described next.

3.1 HUFFMAN CODING

With a given probability distribution on a set of possible characters, Huffman Cod­
ing (e.g. [1]) encodes characters by bitstrings as follows.

Characters are terminal nodes of a binary tree to be built in an incremental fashion.
The probability of a terminal node is defined as the probability of the corresponding
character. The probability of a non-terminal node is defined as the sum of the
probabilities of its sons. Starting from the terminal nodes, a binary tree is built as
follows:

Repeat as long as possible:
Among those nodes that are not children 0/ any non-terminal nodes
created earlier, pick two with lowest associated probabilities. Make
them the two sons 0/ a newly generated non-terminal node.

The branch to the "left" son of each non-terminal node is labeled by a O. The
branch to its "right" son is labeled by a 1. The code of a character c, code(c), is the
bitstring obtained by following the path from the root to the corresponding node.
Obviously, if c #- d, then code(c) cannot be the prefix of code(d). This makes the
code uniquely decipherable.

1050 Jurgen Schmidhuber, Stefan Heil

Characters with high associated probability are encoded by short bitstrings. Char­
acters with low associated probability are encoded by long bitstrings. Huffman
Coding guarantees minimal expected code length, provided all character probabili­
ties are integer powers of ~.

3.2 ARlTHMETIC CODING

In general, Arithmetic Coding works slightly better than Huffman Coding. For
sufficiently long messages, Arithmetic Coding achieves expected code lenghts ar­
bitrarily close to the information-theoretic lower bound. This is true even if the
character probabilities are not powers of ~ (see e.g. [7]) .

The basic idea of Arithmetic Coding is: a message is encoded by an interval of
real numbers from the unit interval [0,1[. The output of Arithmetic Coding is a
binary representation of the boundaries of the corresponding interval. This binary
representation is incrementally generated during message processing. Starting with
the unit interval, for each observed character the interval is made smaller, essentially
in proportion to the probability of the character. A message with low information
content (and high corresponding probability) is encoded by a comparatively large
interval whose precise boundaries can be specified with comparatively few bits. A
message with a lot of information content (and low corresponding probability) is
encoded by a comparatively small interval whose boundaries require comparatively
many bits to be specified.

Although the basic idea is elegant and simple, additional technical considerations
are necessary to make Arithmetic Coding practicable. See [7] for details.

Neither Huffman Coding nor Arithmetic Coding requires that the probability dis­
tribution on the characters remains fixed. This allows for using "time-varying"
conditional probability distributions as generated by the neural predictor.

3.3 HOW TO "UNCOMPRESS" DATA

The information in the compressed file is sufficient to reconstruct the original file
without loss of information. This is done with the "uncompress" algorithm, which
works as follows: Again, for each character efn (m > n), the predictor (sequentially)
emits its output pin based on the n previous characters, where the e{ with n < I < m
were gained sequentially by feeding the approximations p/ (k) of the probabilities
P(e{ = ZIc I e{-n,···, e{-l) into the inverse Huffman Coding procedure (see e.g. [1]),
or, alternatively (depending on which coding procedure was used), into the inverse
Arithmetic Coding procedure (e.g. [7]). Both variants allow for correct decoding of
c{ from eode(c{) . With both variants, to correctly decode some character, we first
need to decode all previous characters. Both variants are guaranteed to restore
the original file from the compressed file.

WHY NOT USE A LOOK-UP TABLE INSTEAD OF A NETWORK?

Because a look-up table would be extremely inefficient. A look-up table requires
kn +1 entries for all the conditional probabilities corresponding to all possible com-

Predictive Coding with Neural Nets 1051

binations of n previous characters and possible next characters. In addition, a
special procedure is required for dealing with previously unseen combinations of
input characters. In contrast, the size of a neural net typically grows in proportion
to n2 (assuming the number of hidden units grows in proportion to the number of
input units), and its inherent "generalization capability" is going to take care of
previously unseen combinations of input characters (hopefully by coming up with
good predicted probabilities).

4 SIMULATIONS

We implemented both alternative variants of the encoding and decoding procedure
described above.

Our current computing environment prohibits extensive experimental evaluations
of the method. The predictor updates turn out to be quite time consuming, which
makes special neural net hardware recommendable. The limited software simula­
tions presented in this section, however, will show that the "neural" compression
technique can achieve "excellent" compression ratios. Here the term "excellent" is
defined by a statement from [1]:

"In general, good algorithms can be expected to achieve an av­
erage compression ratio of 1.5, while excellent algorithms based
upon sophisticated processing techniques will achieve an average
compression ratio exceeding 2.0."

Here the average compression ratio is the average ratio between the lengths of
original and compressed files.

The method was applied to German newspaper articles. The results were compared
to those obtained with standard encoding techniques provided by the operating
system UNIX, namely "pack", "compress", and "gzip" . The corresponding decod­
ing algorithms are "unpack", "uncompress", and "gunzip", respectively. ''pack'' is
based on Huffman-Coding (e.g. [1]), while "compress" and "gzip" are based on
techniques developed by Lempel and Ziv (e.g. [9]). As the file size goes to infinity,
Lempel-Ziv becomes asymptotically optimal in a certain information theoretic sense
[8]. This does not necessarily mean, however, that Lempel-Ziv is optimal for finite
file sizes.

The training set for the predictor was given by a set of 40 articles from the newspa­
per Miinchner M erkur, each containing between 10000 and 20000 characters. The
alphabet consisted of k = 80 possible characters, including upper case and lower
case letters, digits, interpunction symbols, and special German letters like "0", "ii",
"a.". P had 430 hidden units. A "true" unit with constant activation 1.0 was con­
nected to all hidden and output units. The learning rate was 0.2. The training
phase consisted of 25 sweeps through the training set.

The test set consisted of newspaper articles excluded from the training set, each con­
taining between 10000 and 20000 characters. Table 1 lists the average compression
ratios. The "neural" method outperformed the strongest conventional competitor,
the UNIX "gzip" function based on a Lempel-Ziv algorithm.

1052 Jurgen Schmidhuber, Stefan Heil

Method Compression Ratio I
Huffman Coding (UNIX: pack) 1.74

Lempel-Ziv Coding (UNIX: compress) 1.99
Improved Lempel-Ziv (UNIX: gzip -9) 2.29

Neural predictor + Huffman Coding, n = 5 2.70
Neural predictor + Arithmetic Coding, n = 5 2.72

Table 1: Compression ratios of various compression algorithms for short German
text files « 20000 Bytes) from the unknown test set.

Method Compression Ratio I
Huffman Coding (UNIX: pack) 1.67

Lempel-Ziv Coding (UNIX: compress) 1.71
Improved Lempel-Zlv (UNIX: gzip -9) 2.03

Neural predictor + Huffman Coding, n = 5 2.25
Neural predictor + Arithmetic Coding, n = 5 2.20

Table 2: Compression ratios for articles from a different newspaper. The neural
predictor was not retrained.

How does a neural net trained on articles from Miinchner Merkurperform on articles
from other sources? Without retraining the neural predictor, we applied all com­
peting methods to 10 articles from another German newspaper (the Frankenpost).
The results are given in table 2.

The Frankenpost articles were harder to compress for all algorithms. But relative
performance remained comparable.

Note that the time-window was quite small (n = 5). In general, larger time windows
will make more information available to the predictor. In turn, this will improve
the prediction quality and increase the compression ratio. Therefore we expect to
obtain even better results for n > 5 and for recurrent predictor networks.

5 DISCUSSION / OUTLOOK

Our results show that neural networks are promising tools for loss-free data compres­
sion. It was demonstrated that even off-line methods based on small time windows
can lead to excellent compression ratios - at least with small text files, they can
outperform conventional standard algorithms. We have hardly begun, however, to
exhaust the potential of the basic approach.

5.1 ON-LINE METHODS

A disadvantage of the off-line technique above is that it is off-line: The predictor
does not adapt to the specific text file it sees. This limitation is not essential,
however. It is straight-forward to construct an on-line variant of the approach.

Predictive Coding with Neural Nets 1053

With the on-line variant, the predictor continues to learn during compression. The
on-line variant proceeds like this: Both the sender and the receiver start with exactly
the same initial predictor. Whenever the sender sees a new character, it encodes
it using its current predictor. The code is sent to the receiver who decodes it.
Both the sender and the receiver use exactly the same learning protocol to modify
their weights. This implies that the modified weights need not be sent from the
sender to the receiver and do not have to be taken into account to compute the
average compression ratio. Of course, the on-line method promises much higher
compression ratios than the off-line method.

5.2 LIMITATIONS

The main disadvantage of both on-line and off-line variants is their computational
complexity. The current off-line implementation is clearly slower than conventional
standard techniques, by about three orders of magnitude (but no attempt was made
to optimize the code with respect to speed). And the complexity of the on-line
method is even worse (the exact slow-down factor depends on the precise nature of
the learning protocol, of course). For this reason, especially the promising on-line
variants can be recommended only if special neural net hardware is available. Note,
however, that there are many commercial data compression applications which rely
on specialized electronic chips.

5.3 ONGOING RESEARCH

There are a few obvious directions for ongoing experimental research: (1) Use larger
time windows - they seem to be promising even for off-line methods (see the last
paragraph of section 4). (2) Thoroughly test the potential of on-line methods. Both
(1) and (2) should greatly benefit from fast hardware. (3) Compare performance
of predictive coding based on neural predictors to the performance of predictive
coding based on different kinds of predictors.

6 ACKNOWLEDGEMENTS

Thanks to David MacKay for directing our attention towards Arithmetic Coding.
Thanks to Margit Kinder, Martin Eldracher, and Gerhard Weiss for useful com­
ments.

1054 Jiirgen Schmidhuber, Stefan Heil

References

[1] G. Held. Data Compression. Wiley and Sons LTD, New York, 1991.

[2] Y. LeCun. Une procedure d'apprentissage pour reseau a. seuil asymetrique.
Proceedings of Cognitiva 85, Paris, pages 599-604, 1985.

[3] D. B. Parker. Learning-logic. Technical Report TR-47, Center for Compo Re­
search in Economics and Management Sci., MIT, 1985.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre­
sentations by error propagation. In Parallel Distributed Processing, volume 1,
pages 318-362. MIT Press, 1986.

[5] J. H. Schmidhuber and S. Heil. Sequential neural text compression. IEEE
Transactions on Neural Networks, 1994. Accepted for publication.

[6] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, 1974.

[7] I. H. Witten, R. M. Neal , and J. G. Cleary. Arithmetic coding for data com­
pression. Communications of the ACM, 30(6):520-540, 1987.

[8] A. Wyner and J . Ziv. Fixed data base version of the Lempel-Ziv data compres­
sion algorithm. IEEE Transactions In/ormation Theory, 37:878-880, 1991.

[9] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, IT-23(5):337-343, 1977.

