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To compress text files, a neural predictor network P is used to ap­
proximate the conditional probability distribution of possible "next 
characters", given n previous characters. P's outputs are fed into 
standard coding algorithms that generate short codes for characters 
with high predicted probability and long codes for highly unpre­
dictable characters. Tested on short German newspaper articles, 
our method outperforms widely used Lempel-Ziv algorithms (used 
in UNIX functions such as "compress" and "gzip"). 
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1 INTRODUCTION 

The method presented in this paper is an instance of a strategy known as "predic­
tive coding" or "model-based coding". To compress text files, a neural predictor 
network P approximates the conditional probability distribution of possible "next 
characters", given n previous characters. P's outputs are fed into algorithms that 
generate short codes for characters with low information content (characters with 
high predicted probability) and long codes for characters conveying a lot of infor­
mation (highly unpredictable characters) [5]. Two such standard coding algorithms 
are employed: Huffman Coding (see e.g. [1]) and Arithmetic Coding (see e.g. [7]). 

With the off-line variant of the approach, P's training phase is based on a set F 
of training files. After training, the weights are frozen. Copies of P are installed 
at all machines functioning as message receivers or senders. From then on, P is 
used to encode and decode unknown files without being changed any more. The 
weights become part of the code of the compression algorithm. Note that the 
storage occupied by the network weights does not have to be taken into account to 
measure the performance on unknown files - just like the code for a conventional 
data compression algorithm does not have to be taken into account. 

The more sophisticated on-line variant of our approach will be addressed later. 

2 A PREDICTOR OF CONDITIONAL PROBABILITIES 

Assume that the alphabet contains k possible characters Zl, Z2, •.• , Z1c. The (local) 
representation of Zi is a binary k-dimensional vector r( Zi) with exactly one non-zero 
component (at the i-th position). P has nk input units and k output units. n is 
called the "time-window size". We insert n default characters Zo at the beginning 
of each file. The representation of the default character, r(zo), is the k-dimensional 
zero-vector. The m-th character of file f (starting from the first default character) 
is called efn. 

For all f E F and all possible m > n, P receives as an input 

r(e;"_n) 0 r(e;"_n+l) 0 ... 0 r(c!n_l), (1) 

where 0 is the concatenation operator, for vectors. P produces as an output Pin, 
a k-dimensional output vector. Using back-propagation [6][2][3][4], P is trained to 
mmlIDlze 

~ L L II r(c!n) - pin 112 . 
jEFm>n 

(2) 

Expression (2) is minimal if pin always equals 

E(r(efn) I e;"_n,·· ·,c!n-l), (3) 

the conditional expectation of r( efn), given r( e;"_n) ore e;"_n+1)o . . . or( c!n-l). Due 
to the local character representation, this is equivalent to (Pin); being equal to the 
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conditional probability 

(4) 

for all / and for all appropriate m> n, where (P,{Jj denotes the j-th component 
of the vector P/n. 

In general, the (P/n)i will not quite match the corresponding conditional probabili­
ties. For normalization purposes, we define 

PI (.) _ (P/n)i 
m 1 - j: f· 

L:j=I(Pm)j 

No normalization is used during training, however. 

3 HOW TO USE THE PREDICTOR FOR 
COMPRESSION 

(5) 

We use a standard procedure for predictive coding. With the help of a copy of 
P, an unknown file / can be compressed as follows: Again, n default characters 
are inserted at the beginning. For each character cfn (m> n), the predictor emits 
its output P/n based on the n previous characters. There will be a k such that 
cfn = Zj:. The estimate of P(cfn = Zj: I c!n-n, ... , Crn-l) is given by P/n(k). The 
code of cfn, code( cfn), is generated by feeding P/n (k) into the Huffman Coding 
algorithm (see below), or, alternatively, into the Arithmetic Coding algorithm (see 
below). code(cfn) is written into the compressed file. The basic ideas of both coding 
algorithms are described next. 

3.1 HUFFMAN CODING 

With a given probability distribution on a set of possible characters, Huffman Cod­
ing (e.g. [1]) encodes characters by bitstrings as follows. 

Characters are terminal nodes of a binary tree to be built in an incremental fashion. 
The probability of a terminal node is defined as the probability of the corresponding 
character. The probability of a non-terminal node is defined as the sum of the 
probabilities of its sons. Starting from the terminal nodes, a binary tree is built as 
follows: 

Repeat as long as possible: 
Among those nodes that are not children 0/ any non-terminal nodes 
created earlier, pick two with lowest associated probabilities. Make 
them the two sons 0/ a newly generated non-terminal node. 

The branch to the "left" son of each non-terminal node is labeled by a O. The 
branch to its "right" son is labeled by a 1. The code of a character c, code(c), is the 
bitstring obtained by following the path from the root to the corresponding node. 
Obviously, if c #- d, then code(c) cannot be the prefix of code(d). This makes the 
code uniquely decipherable. 
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Characters with high associated probability are encoded by short bitstrings. Char­
acters with low associated probability are encoded by long bitstrings. Huffman 
Coding guarantees minimal expected code length, provided all character probabili­
ties are integer powers of ~. 

3.2 ARlTHMETIC CODING 

In general, Arithmetic Coding works slightly better than Huffman Coding. For 
sufficiently long messages, Arithmetic Coding achieves expected code lenghts ar­
bitrarily close to the information-theoretic lower bound. This is true even if the 
character probabilities are not powers of ~ (see e.g. [7]) . 

The basic idea of Arithmetic Coding is: a message is encoded by an interval of 
real numbers from the unit interval [0,1[. The output of Arithmetic Coding is a 
binary representation of the boundaries of the corresponding interval. This binary 
representation is incrementally generated during message processing. Starting with 
the unit interval, for each observed character the interval is made smaller, essentially 
in proportion to the probability of the character. A message with low information 
content (and high corresponding probability) is encoded by a comparatively large 
interval whose precise boundaries can be specified with comparatively few bits. A 
message with a lot of information content (and low corresponding probability) is 
encoded by a comparatively small interval whose boundaries require comparatively 
many bits to be specified. 

Although the basic idea is elegant and simple, additional technical considerations 
are necessary to make Arithmetic Coding practicable. See [7] for details. 

Neither Huffman Coding nor Arithmetic Coding requires that the probability dis­
tribution on the characters remains fixed. This allows for using "time-varying" 
conditional probability distributions as generated by the neural predictor. 

3.3 HOW TO "UNCOMPRESS" DATA 

The information in the compressed file is sufficient to reconstruct the original file 
without loss of information. This is done with the "uncompress" algorithm, which 
works as follows: Again, for each character efn (m > n), the predictor (sequentially) 
emits its output pin based on the n previous characters, where the e{ with n < I < m 
were gained sequentially by feeding the approximations p/ (k) of the probabilities 
P(e{ = ZIc I e{-n,···, e{-l) into the inverse Huffman Coding procedure (see e.g. [1]), 
or, alternatively (depending on which coding procedure was used), into the inverse 
Arithmetic Coding procedure (e.g. [7]). Both variants allow for correct decoding of 
c{ from eode(c{) . With both variants, to correctly decode some character, we first 
need to decode all previous characters. Both variants are guaranteed to restore 
the original file from the compressed file. 

WHY NOT USE A LOOK-UP TABLE INSTEAD OF A NETWORK? 

Because a look-up table would be extremely inefficient. A look-up table requires 
kn +1 entries for all the conditional probabilities corresponding to all possible com-
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binations of n previous characters and possible next characters. In addition, a 
special procedure is required for dealing with previously unseen combinations of 
input characters. In contrast, the size of a neural net typically grows in proportion 
to n2 (assuming the number of hidden units grows in proportion to the number of 
input units), and its inherent "generalization capability" is going to take care of 
previously unseen combinations of input characters (hopefully by coming up with 
good predicted probabilities). 

4 SIMULATIONS 

We implemented both alternative variants of the encoding and decoding procedure 
described above. 

Our current computing environment prohibits extensive experimental evaluations 
of the method. The predictor updates turn out to be quite time consuming, which 
makes special neural net hardware recommendable. The limited software simula­
tions presented in this section, however, will show that the "neural" compression 
technique can achieve "excellent" compression ratios. Here the term "excellent" is 
defined by a statement from [1]: 

"In general, good algorithms can be expected to achieve an av­
erage compression ratio of 1.5, while excellent algorithms based 
upon sophisticated processing techniques will achieve an average 
compression ratio exceeding 2.0." 

Here the average compression ratio is the average ratio between the lengths of 
original and compressed files. 

The method was applied to German newspaper articles. The results were compared 
to those obtained with standard encoding techniques provided by the operating 
system UNIX, namely "pack", "compress", and "gzip" . The corresponding decod­
ing algorithms are "unpack", "uncompress", and "gunzip", respectively. ''pack'' is 
based on Huffman-Coding (e.g. [1]), while "compress" and "gzip" are based on 
techniques developed by Lempel and Ziv (e.g. [9]). As the file size goes to infinity, 
Lempel-Ziv becomes asymptotically optimal in a certain information theoretic sense 
[8]. This does not necessarily mean, however, that Lempel-Ziv is optimal for finite 
file sizes. 

The training set for the predictor was given by a set of 40 articles from the newspa­
per Miinchner M erkur, each containing between 10000 and 20000 characters. The 
alphabet consisted of k = 80 possible characters, including upper case and lower 
case letters, digits, interpunction symbols, and special German letters like "0", "ii", 
"a.". P had 430 hidden units. A "true" unit with constant activation 1.0 was con­
nected to all hidden and output units. The learning rate was 0.2. The training 
phase consisted of 25 sweeps through the training set. 

The test set consisted of newspaper articles excluded from the training set, each con­
taining between 10000 and 20000 characters. Table 1 lists the average compression 
ratios. The "neural" method outperformed the strongest conventional competitor, 
the UNIX "gzip" function based on a Lempel-Ziv algorithm. 
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Method Compression Ratio I 
Huffman Coding (UNIX: pack) 1.74 

Lempel-Ziv Coding (UNIX: compress) 1.99 
Improved Lempel-Ziv ( UNIX: gzip -9) 2.29 

Neural predictor + Huffman Coding, n = 5 2.70 
Neural predictor + Arithmetic Coding, n = 5 2.72 

Table 1: Compression ratios of various compression algorithms for short German 
text files « 20000 Bytes) from the unknown test set. 

Method Compression Ratio I 
Huffman Coding (UNIX: pack) 1.67 

Lempel-Ziv Coding (UNIX: compress) 1.71 
Improved Lempel-Zlv ( UNIX: gzip -9) 2.03 

Neural predictor + Huffman Coding, n = 5 2.25 
Neural predictor + Arithmetic Coding, n = 5 2.20 

Table 2: Compression ratios for articles from a different newspaper. The neural 
predictor was not retrained. 

How does a neural net trained on articles from Miinchner Merkurperform on articles 
from other sources? Without retraining the neural predictor, we applied all com­
peting methods to 10 articles from another German newspaper (the Frankenpost). 
The results are given in table 2. 

The Frankenpost articles were harder to compress for all algorithms. But relative 
performance remained comparable. 

Note that the time-window was quite small (n = 5). In general, larger time windows 
will make more information available to the predictor. In turn, this will improve 
the prediction quality and increase the compression ratio. Therefore we expect to 
obtain even better results for n > 5 and for recurrent predictor networks. 

5 DISCUSSION / OUTLOOK 

Our results show that neural networks are promising tools for loss-free data compres­
sion. It was demonstrated that even off-line methods based on small time windows 
can lead to excellent compression ratios - at least with small text files, they can 
outperform conventional standard algorithms. We have hardly begun, however, to 
exhaust the potential of the basic approach. 

5.1 ON-LINE METHODS 

A disadvantage of the off-line technique above is that it is off-line: The predictor 
does not adapt to the specific text file it sees. This limitation is not essential, 
however. It is straight-forward to construct an on-line variant of the approach. 
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With the on-line variant, the predictor continues to learn during compression. The 
on-line variant proceeds like this: Both the sender and the receiver start with exactly 
the same initial predictor. Whenever the sender sees a new character, it encodes 
it using its current predictor. The code is sent to the receiver who decodes it. 
Both the sender and the receiver use exactly the same learning protocol to modify 
their weights. This implies that the modified weights need not be sent from the 
sender to the receiver and do not have to be taken into account to compute the 
average compression ratio. Of course, the on-line method promises much higher 
compression ratios than the off-line method. 

5.2 LIMITATIONS 

The main disadvantage of both on-line and off-line variants is their computational 
complexity. The current off-line implementation is clearly slower than conventional 
standard techniques, by about three orders of magnitude (but no attempt was made 
to optimize the code with respect to speed). And the complexity of the on-line 
method is even worse (the exact slow-down factor depends on the precise nature of 
the learning protocol, of course). For this reason, especially the promising on-line 
variants can be recommended only if special neural net hardware is available. Note, 
however, that there are many commercial data compression applications which rely 
on specialized electronic chips. 

5.3 ONGOING RESEARCH 

There are a few obvious directions for ongoing experimental research: (1) Use larger 
time windows - they seem to be promising even for off-line methods (see the last 
paragraph of section 4). (2) Thoroughly test the potential of on-line methods. Both 
(1) and (2) should greatly benefit from fast hardware. (3) Compare performance 
of predictive coding based on neural predictors to the performance of predictive 
coding based on different kinds of predictors. 
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