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Abstract 

In this paper we present a new version of the standard multilayer 
perceptron (MLP) algorithm for the state-of-the-art in neural net­
work VLSI implementations: the Intel Ni1000. This new version of 
the MLP uses a fundamental property of high dimensional spaces 
which allows the 12-norm to be accurately approximated by the 
It -norm. This approach enables the standard MLP to utilize the 
parallel architecture of the Ni1000 to achieve on the order of 40000, 
256-dimensional classifications per second. 

1 The Intel NilOOO VLSI Chip 

The Nestor/Intel radial basis function neural chip (Ni1000) contains the equivalent 
of 1024 256-dimensional artificial digital neurons and can perform at least 40000 
classifications per second [Sullivan, 1993]. To attain this great speed, the Ni1000 
was designed to calculate "city block" distances (Le. the II-norm) and thus to 
avoid the large number of multiplication units that would be required to calculate 
Euclidean dot products in parallel. Each neuron calculates the city block distance 
between its stored weights and the current input: 

neuron activity = L IWi - :eil (1) 

where w, is the neuron's stored weight for the ith input and :ei is the ith input. 
Thus the Nil000 is ideally suited to perform both the RCE [Reillyet al., 1982] and 
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PRCE [Scofield et al., 1987] algorithms or any of the other commonly used radial 
basis function (RBF) algorithms. However, dot products are central in the calcula­
tions performed by most neural network algorithms (e.g. MLP, Cascade Correlation, 
etc.). Furthermore, for high dimensional data, the dot product becomes the compu­
tation bottleneck (i.e. most ofthe network's time is spent calculating dot products). 
If the dot product can not be performed in parallel there will be little advantage 
using the NilOOO for such algorithms. In this paper, we address this problem by 
showing that we can extend the NilOOO to many of the standard neural network 
algorithms by representing the Euclidean dot product as a function of Euclidean 
norms and by then using a city block norm approximation to the Euclidean norm. 
Section 2, introduces the approximate dot productj Section 3 describes the City 
Block MLP which uses the approximate dot productj and Section 4 presents ex­
periments which demonstrate that the City Block MLP performs well on the NIST 
OCR data and on human face recognition data. 

2 Approximate Dot Product 

Consider the following approximation [Perrone, 1993]: 

1 
11Z11 ~ y'n1Z1 (2) 

where z is some n-dimensional vector, II· II is the Euclidean length (i.e. the 12 -

norm) and I· I is the City Block length (i.e. the 11-norm). This approximation is 
motivated by the fact that in high dimensional spaces it is accurate for a majority 
of the points in the space. In Figure 1, we suggest an intuitive interpretation of why 
this approximation is reasonable. It is clear from Figure 1 that the approximation 
is reasonable for about 20% of the points on the arc in 2 dimensions. 1 As the 
dimensionality of the data space increases, the tangent region in Figure 1 expands 
asymptotically to fill the entire space and thus the approximation becomes more 
valid. Below we examine how accurate this approximation is and how we can use 
it with the NilOOO, particularly in the MLP context. Given a set of vectors, V, all 
with equal city block length, we measure the accuracy of the approximation by the 
ratio of the variance of the Euclidean lengths in V to the squared mean Euclidean 
lengths in V. If the ratio is low, then the approximation is good and all we must 
do is scale the city block length to the mean Euclidean length to get a good fit. 2 In 
particular, it can be shown that assuming all the vectors of the space are equally 
likely, the following equation holds [Perrone, 1993]: 

O'~ < (a~(!n+ 1) -1)ILfower, (3) 

where n is the dimension of the space; ILn is the average Euclidean length of the 
set of vectors with fixed city block length Sj O'~ is the variance about the average 
Euclidean length; ILlower is the lower bound for ILn and is given by ILlower == an S / Vnj 

1 In fact, approximately 20% of the points are within 1% of each other and 40% of the 
points are within 5% of each other. 

2 Note that in Equation 2 we scale by 1/ fo. For high dimensional spaces this is a good 
approximation to the ratio of the mean Euclidean length to the City Block length. 
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Figure 1: Two dimensional interpretation of the city block approximation. The 
circle corresponds to all of the vectors with the same Euclidean length. The inner 
square corresponds to all of the vectors with city block length equal the Euclidean 
length of the vectors in the circle. The outer square (tangent to the circle) corre­
sponds to the set of vectors over which we will be making our approximation. In 
order to scale the outer square to the inner square, we multiple by 11 Vn where 
n is the dimensionality of the space. The outer square approximates the circle in 
the regions near the tangent points. In high dimensional spaces, these tangent re­
gions approximate a large portion of the total hypersphere and thus the city block 
distance is a good approximation along most of the hypersphere. 

and an is defined by 

n -1 J en (n) ~ 2 a n =-- 1+ - +--- n + 1 2?r( n - 1) 2 n + 1 . 
(4) 

From this equation we see that the ratio of O"~ to /-L~ower in the large n limit is 
bounded above by 0.4. This bound is not very tight due to the complexity of the 
calculations required; however Figure 3 suggests that a much tighter bound must 
exist. A better bound exists if we are willing to add a minor constraint to our 
high dimensional space [Perrone, 1993]. In the case in which each dimension of the 
vector is constrained such that the entire vector cannot lie along a single axis,3 we 
can show that 

0"2 :::::: 2(n -1) ( ~ _ 1)2 /-L~ower 
n (n + 1) 2 V S a~ , 

(5) 

where S is the city block length of the vector in question. Thus in this case, the ratio 
of O"~ to /-L~ower decreases at least as fast as lin since nl S will be some fixed constant 
independent of n. 4 This dependency on nand S is shown in Figure 2. This result 
suggests that the approximation will be very accurate for many real-world pattern 

3For example, when the axes are constrained to be in the range [D, 1] and the city block 
length of the vector is greater than 1. Note that this is true for the majority of the points 
in a n dimensional unit hypercube. 

~Thus the accuracy improves as S increases towards its maximum value. 
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recognition tasks such as speech and high resolution image recognition which can 
typically have thousand or even tens of thousands of dimensions. 
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Figure 2: Plot of unj I-'lower vs. n for constrained vectors with varying values of Sin. 
As S grows the ratio shrinks and consequently, accuracy improves. If we assume 
that all of the vectors are uniformly distributed in an n-dimensional unit hypercube, 
it is easy to show that the average city block length is nj2 and the variance of the 
city block length is n/12. Since Sjn will generally be within one standard deviation 
ofthe mean, we find that typically 0.2 < Sjn < 0.8. We can use the same analysis 
on binary valued vectors to derive similar results. 

We explore this phenomenon further by considering the following Monte Carlo simu­
lation. We sampled 200000 points from a uniform distribution over an n-dimensional 
cube. The Euclidean distance of each of these points to a fixed corner of the cube 
was calculated and all the lengths were normalized by the largest possible length, 
~. Histograms of the resulting lengths are shown in Figure 3 for four different val­
ues of n. Note that as the dimension increases the variance about the mean drops. 
From Figure 3 we see that for as few as 100 dimensions, the standard deviation is 
approximately 5% of the mean length. 

3 The City Block MLP 

In this section we describe how the approximation explained in Section 2 can be 
used by the NilOOO to implement MLPs in parallel. Consider the following formula 
for the dot product 

(6) 
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Figure 3: Probability distributions for randomly draw lengths. Note that as the 
dimension increases the variance about the mean length drops. 

where II· II is the Euclidean length (i.e. 12-norm).5 Using Equation 2, we can 
approximation Equation 6 by 

...... 1(1"';;'12 I'" ;;'12) :t! • Y ~ - :t! + YI - :t! - YI 
4n 

(7) 

where n is the dimension of the vectors and I . I is the city block length. The 
advantage to the approximation in Equation 7 is that it can be implemented in 
parallel on the Ni1000 while still behaving like a dot product. Thus we can use this 
approximation to implement MLP's on an Ni1000. The standard functional form 
for MLP's is given by [Rumelhart et al., 1986] 

N d 

h(:t!;a,f3) = u(aok + Lajku (!30j + Lf3ij:t!i») (8) 
j=1 i=1 

were u is a fixed ridge function chosen to be u(:t!) = (1 + e -:t) - \ N is the number 
of hidden units; k is the class label; d is the dimensionality of the data space; and a 
and f3 are adjustable parameters. The alternative which we propose, the City Block 
MLP, is given by [Perrone, 1993] 

N 1 d 1 d 

gk(:t!; a, f3) = u(aok + L ajku (f30j + 4(L lf3ij + :t!i1)2 - 4(L lf3ij -:t!i 1)2») (9) 
j=1 n i=1 n i=1 

or 

riNote also that depending on the information available to us, we could use either 

i· y = }(IIi + yW -lIiW -11?7W) 

i· y= }<lIiIl2 + IIYlI2 -Iii - Y112). 
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DATA SET HIDDEN STANDARD CITYBLOCK ENSEMBLE 
UNITS % CORRECT % CORRECT CITYBLOCK 

Faces 12 94.6±1.4 92.2±1.9 96.3 
Numbers 10 98.4±0.17 97.3±0.26 98.3 
Lowercase 20 88.9±0.31 84.0±0.48 88.6 
Uppercase 20 90.5±0.39 85.6±O.89 90.7 

Table 1: Comparison of MLPs classification performance with and with out the 
city block approximation to the dot product. The final column shows the effect of 
function space averaging. 

where the two city block calculation would be performed by neurons on the Nil000 
chip. 6 The City Block MLP learns in the standard way by minimizing the mean 
square error (MSE), 

MSE = 2: (glc (Xi; 0:, (3) - tlci) 2 (10) 
ilc 

where tic; is the value of the data at Xi for a class k. The MSE is minimized using 
the backpropagation stochastic gradient descent learning rule [Werbos, 1974]: For 
a fixed stepsize f'/ and each k, randomly choose a data point Xi and change 'Y by the 
amount 

A _ o(MSEi) 
L.l.'Y - -f'/ , o'Y 

(11) 

where 'Y is either 0: or {3 and MSEi is the contribution to the MSE of the ith data 
point. Note that although we have motivated the City Block MLP above as an 
approximation to the standard MLP, the City Block MLP can also be thought of 
as special case of radial basis function network. 

4 Experimental Results 

This section describes experiments using the City Block MLP on a 120-dimensional 
representation of the NIST Handwritten Optical Character Recognition database 
and on a 2294-dimensional grayscale human face image database. The results in­
dicate that the performance of networks using the approximation is as good as 
networks using the exact dot product [Perrone, 1993]. 

In order to test the performance of the City Block MLP, we simulated the behav­
ior of the NilOOO on a SPARC station in serial. We used the approximation only 
on the first layer of weights (i.e. those connecting the inputs to the hidden units) 
where the dimensionality is highest and the approximation is most accurate. The 
approximation was not used in the second layer of weights (i.e. those connecting 
the hidden units to the output units were calculated in serial) since the number of 
hidden units was low and therefore do not correspond to a major computational 
bottleneck. It should be noted that for a 2 layer MLP in which the number of 
hidden units and output units are much lower than the input dimensionality, the 

6The dot product between the hidden and the output layers may also be approximated 
in the same way but it is not shown here. In fact, the NilOOO could be used to perform all 
of the functions required by the network. 
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DATA SET HIDDEN STANDARD CITYBLOCK ENSEMBLE 
UNITS FOM FOM CITYBLOCK 

Numbers 10 92.1±0.57 87.4±0.83 92.5 
Lowercase 20 59.7±1.7 44.4±2.0 62.7 
Uppercase 20 60.0±1.8 44.6±4.5 66.4 

Table 2: Comparison of MLPs FOM. The FOM is defined as the 100 minus the 
number rejected minus 10 time the number incorrect . 

majority of the computation is in the calculation of the dot products in the first 
weight layer. So even using the approximation only in the first layer will signifi­
cantly accelerate the calculation. Also, the Nil000 on-chip math coprocessor can 
perform a low-dimensional, second layer dot product while the high-dimensional, 
first layer dot product is being approximated in parallel by the city block units. In 
practice, if the number of hidden units is large, the approximation to the dot prod­
uct may also be used in the second weight layer. In the simulations, the networks 
used the approximation when calculating the dot product only in the feedforward 
phase of the algorithm. For the feedback ward phase (i.e. the error backpropagation 
phase), the algorithm was identical to the original backward propagation algorithm. 
In other words the approximation was used to calculate the network activity but 
the stochastic gradient term was calculated as if the network activity was generated 
with the real dot product. This simplification does not slow the calculation because 
all the terms needed for the backpropagation phase are calculated in the forward 
propagation phase In addition, it allows us to avoid altering the backpropagation 
algorithm to incorporate the derivative of the city block approximation. We are 
currently working on simulations which use city block calculations in both the for­
ward and backward passes. Since these simulations will use the correct derivative 
for the functional form of the City Block MLP, we expect that they will have better 
performance. In practice, the price we pay for making the approximation is reduced 
performance. We can avoid this problem by increasing the number of hidden units 
and thereby allow more flexibility in the network. This increase in size will not 
significantly slow the algorithm since the hidden unit activities are calculated in 
parallel. In Table 1 and Table 2, we compare the performance of a standard MLP 
without the city block approximation to a MLP using the city block approximation 
to calculate network activity. In all cases, a population of 10 neural networks were 
trained from random initial weight configurations and the means and standard de­
viations were listed. The number of hidden units was chosen to give a reasonable 
size network while at the same time reasonably quick training. Training was halted 
by cross-validating on an independent hold-out set. From these results, one can 
see that the relative performances with and with out the approximation are simi­
lar although the City Block is slightly lower. We also perform ensemble averaging 
[Perrone, 1993, Perrone and Cooper, 1993] to further improve the performance of 
the approximate networks. These results are given in the last column of the table. 
From these data we see that by combining the city block approximation with the 
averaging method, we can generate networks which have comparable and sometimes 
better performance than the standard MLPs. In addition, because the Nil000 is 
running in parallel, there is minimal additional computational overhead for using 
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the averaging. 7 

5 Discussion 

We have described a new radial basis function network architecture which can be 
used in high dimensional spaces to approximate the learning characteristics of a 
standard MLP without using dot products. The absence of dot products allows us 
to implement this new architecture efficiently in parallel on an NilOOO; thus enabling 
us to take advantage of the Ni1000's extremely fast classification rates. We have 
also presented experimental results on real-world data which indicate that these 
high classifications rates can be achieved while maintaining or improving classifica­
tion accuracy. These results illustrate that it is possible to use the inherent high 
dimensionality of real-world problems to our advantage. 
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