
The NilOOO: High Speed Parallel VLSI
for Implementing Multilayer Perceptrons

Leon N Cooper Michael P. Perrone
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

mppGwatson.ibm.com

Institute for Brain and Neural Systems
Brown University

Providence, Ri 02912
IncGcns.brown.edu

Abstract

In this paper we present a new version of the standard multilayer
perceptron (MLP) algorithm for the state-of-the-art in neural net­
work VLSI implementations: the Intel Ni1000. This new version of
the MLP uses a fundamental property of high dimensional spaces
which allows the 12-norm to be accurately approximated by the
It -norm. This approach enables the standard MLP to utilize the
parallel architecture of the Ni1000 to achieve on the order of 40000,
256-dimensional classifications per second.

1 The Intel NilOOO VLSI Chip

The Nestor/Intel radial basis function neural chip (Ni1000) contains the equivalent
of 1024 256-dimensional artificial digital neurons and can perform at least 40000
classifications per second [Sullivan, 1993]. To attain this great speed, the Ni1000
was designed to calculate "city block" distances (Le. the II-norm) and thus to
avoid the large number of multiplication units that would be required to calculate
Euclidean dot products in parallel. Each neuron calculates the city block distance
between its stored weights and the current input:

neuron activity = L IWi - :eil (1)

where w, is the neuron's stored weight for the ith input and :ei is the ith input.
Thus the Nil000 is ideally suited to perform both the RCE [Reillyet al., 1982] and

748 Michael P. Perrone. Leon N. Cooper

PRCE [Scofield et al., 1987] algorithms or any of the other commonly used radial
basis function (RBF) algorithms. However, dot products are central in the calcula­
tions performed by most neural network algorithms (e.g. MLP, Cascade Correlation,
etc.). Furthermore, for high dimensional data, the dot product becomes the compu­
tation bottleneck (i.e. most ofthe network's time is spent calculating dot products).
If the dot product can not be performed in parallel there will be little advantage
using the NilOOO for such algorithms. In this paper, we address this problem by
showing that we can extend the NilOOO to many of the standard neural network
algorithms by representing the Euclidean dot product as a function of Euclidean
norms and by then using a city block norm approximation to the Euclidean norm.
Section 2, introduces the approximate dot productj Section 3 describes the City
Block MLP which uses the approximate dot productj and Section 4 presents ex­
periments which demonstrate that the City Block MLP performs well on the NIST
OCR data and on human face recognition data.

2 Approximate Dot Product

Consider the following approximation [Perrone, 1993]:

1
11Z11 ~ y'n1Z1 (2)

where z is some n-dimensional vector, II· II is the Euclidean length (i.e. the 12 -

norm) and I· I is the City Block length (i.e. the 11-norm). This approximation is
motivated by the fact that in high dimensional spaces it is accurate for a majority
of the points in the space. In Figure 1, we suggest an intuitive interpretation of why
this approximation is reasonable. It is clear from Figure 1 that the approximation
is reasonable for about 20% of the points on the arc in 2 dimensions. 1 As the
dimensionality of the data space increases, the tangent region in Figure 1 expands
asymptotically to fill the entire space and thus the approximation becomes more
valid. Below we examine how accurate this approximation is and how we can use
it with the NilOOO, particularly in the MLP context. Given a set of vectors, V, all
with equal city block length, we measure the accuracy of the approximation by the
ratio of the variance of the Euclidean lengths in V to the squared mean Euclidean
lengths in V. If the ratio is low, then the approximation is good and all we must
do is scale the city block length to the mean Euclidean length to get a good fit. 2 In
particular, it can be shown that assuming all the vectors of the space are equally
likely, the following equation holds [Perrone, 1993]:

O'~ < (a~(!n+ 1) -1)ILfower, (3)

where n is the dimension of the space; ILn is the average Euclidean length of the
set of vectors with fixed city block length Sj O'~ is the variance about the average
Euclidean length; ILlower is the lower bound for ILn and is given by ILlower == an S / Vnj

1 In fact, approximately 20% of the points are within 1% of each other and 40% of the
points are within 5% of each other.

2 Note that in Equation 2 we scale by 1/ fo. For high dimensional spaces this is a good
approximation to the ratio of the mean Euclidean length to the City Block length.

VLSI for Implementing Multilayer Perceptrons 749

Figure 1: Two dimensional interpretation of the city block approximation. The
circle corresponds to all of the vectors with the same Euclidean length. The inner
square corresponds to all of the vectors with city block length equal the Euclidean
length of the vectors in the circle. The outer square (tangent to the circle) corre­
sponds to the set of vectors over which we will be making our approximation. In
order to scale the outer square to the inner square, we multiple by 11 Vn where
n is the dimensionality of the space. The outer square approximates the circle in
the regions near the tangent points. In high dimensional spaces, these tangent re­
gions approximate a large portion of the total hypersphere and thus the city block
distance is a good approximation along most of the hypersphere.

and an is defined by

n -1 J en (n) ~ 2 a n =-- 1+ - +--- n + 1 2?r(n - 1) 2 n + 1 .
(4)

From this equation we see that the ratio of O"~ to /-L~ower in the large n limit is
bounded above by 0.4. This bound is not very tight due to the complexity of the
calculations required; however Figure 3 suggests that a much tighter bound must
exist. A better bound exists if we are willing to add a minor constraint to our
high dimensional space [Perrone, 1993]. In the case in which each dimension of the
vector is constrained such that the entire vector cannot lie along a single axis,3 we
can show that

0"2 :::::: 2(n -1) (~ _ 1)2 /-L~ower
n (n + 1) 2 V S a~ ,

(5)

where S is the city block length of the vector in question. Thus in this case, the ratio
of O"~ to /-L~ower decreases at least as fast as lin since nl S will be some fixed constant
independent of n. 4 This dependency on nand S is shown in Figure 2. This result
suggests that the approximation will be very accurate for many real-world pattern

3For example, when the axes are constrained to be in the range [D, 1] and the city block
length of the vector is greater than 1. Note that this is true for the majority of the points
in a n dimensional unit hypercube.

~Thus the accuracy improves as S increases towards its maximum value.

750 Michael P. Perrone, Leon N. Cooper

recognition tasks such as speech and high resolution image recognition which can
typically have thousand or even tens of thousands of dimensions.

1

0.8

0.6

0.4

0 .2

SIn - 0.025
SIn - 0.05

SIn - 0.1
SIn - 0 .2
SIn - 0 .3

\.-,----.------------ -----------------o L-__ ~~:~·~~~::~~:· ·~~:2~:~··--u-- ~--·_-·_··_-·_· -~--_·-_ . . _-._-._ . .. ~.-~. -~-._ .. _ .. ~ .. -_ .. _ .. _._--_ .. ~.-._.-_::_~~:-~.:_~_~-_:;~~_::~~:~~~-:~~:~--~7

o 100 200 300 400 500

Figure 2: Plot of unj I-'lower vs. n for constrained vectors with varying values of Sin.
As S grows the ratio shrinks and consequently, accuracy improves. If we assume
that all of the vectors are uniformly distributed in an n-dimensional unit hypercube,
it is easy to show that the average city block length is nj2 and the variance of the
city block length is n/12. Since Sjn will generally be within one standard deviation
ofthe mean, we find that typically 0.2 < Sjn < 0.8. We can use the same analysis
on binary valued vectors to derive similar results.

We explore this phenomenon further by considering the following Monte Carlo simu­
lation. We sampled 200000 points from a uniform distribution over an n-dimensional
cube. The Euclidean distance of each of these points to a fixed corner of the cube
was calculated and all the lengths were normalized by the largest possible length,
~. Histograms of the resulting lengths are shown in Figure 3 for four different val­
ues of n. Note that as the dimension increases the variance about the mean drops.
From Figure 3 we see that for as few as 100 dimensions, the standard deviation is
approximately 5% of the mean length.

3 The City Block MLP

In this section we describe how the approximation explained in Section 2 can be
used by the NilOOO to implement MLPs in parallel. Consider the following formula
for the dot product

(6)

VLSI for Implementing Multilayer Perceptrons 751

0.45

0 . 4

0.35

0.3

g
0.25 ~

{}
e 0.2
t>.

0 . 15

0.1

0.05

0.45 0.5 0.55 0.6 0.65
Norma1izad LenQth

~ooo D~mQg~ons ~

100 D.1.mes.1.ons - --
10 D;l.mas1.ons -c:.--­

:2 D.1.mas1.ons - .-

0.7 0.75 O.B

Figure 3: Probability distributions for randomly draw lengths. Note that as the
dimension increases the variance about the mean length drops.

where II· II is the Euclidean length (i.e. 12-norm).5 Using Equation 2, we can
approximation Equation 6 by

...... 1(1"';;'12 I'" ;;'12) :t! • Y ~ - :t! + YI - :t! - YI
4n

(7)

where n is the dimension of the vectors and I . I is the city block length. The
advantage to the approximation in Equation 7 is that it can be implemented in
parallel on the Ni1000 while still behaving like a dot product. Thus we can use this
approximation to implement MLP's on an Ni1000. The standard functional form
for MLP's is given by [Rumelhart et al., 1986]

N d

h(:t!;a,f3) = u(aok + Lajku (!30j + Lf3ij:t!i») (8)
j=1 i=1

were u is a fixed ridge function chosen to be u(:t!) = (1 + e -:t) - \ N is the number
of hidden units; k is the class label; d is the dimensionality of the data space; and a
and f3 are adjustable parameters. The alternative which we propose, the City Block
MLP, is given by [Perrone, 1993]

N 1 d 1 d

gk(:t!; a, f3) = u(aok + L ajku (f30j + 4(L lf3ij + :t!i1)2 - 4(L lf3ij -:t!i 1)2») (9)
j=1 n i=1 n i=1

or

riNote also that depending on the information available to us, we could use either

i· y = }(IIi + yW -lIiW -11?7W)

i· y= }<lIiIl2 + IIYlI2 -Iii - Y112).

752 Michael P. Perrone, Leon N. Cooper

DATA SET HIDDEN STANDARD CITYBLOCK ENSEMBLE
UNITS % CORRECT % CORRECT CITYBLOCK

Faces 12 94.6±1.4 92.2±1.9 96.3
Numbers 10 98.4±0.17 97.3±0.26 98.3
Lowercase 20 88.9±0.31 84.0±0.48 88.6
Uppercase 20 90.5±0.39 85.6±O.89 90.7

Table 1: Comparison of MLPs classification performance with and with out the
city block approximation to the dot product. The final column shows the effect of
function space averaging.

where the two city block calculation would be performed by neurons on the Nil000
chip. 6 The City Block MLP learns in the standard way by minimizing the mean
square error (MSE),

MSE = 2: (glc (Xi; 0:, (3) - tlci) 2 (10)
ilc

where tic; is the value of the data at Xi for a class k. The MSE is minimized using
the backpropagation stochastic gradient descent learning rule [Werbos, 1974]: For
a fixed stepsize f'/ and each k, randomly choose a data point Xi and change 'Y by the
amount

A _ o(MSEi)
L.l.'Y - -f'/ , o'Y

(11)

where 'Y is either 0: or {3 and MSEi is the contribution to the MSE of the ith data
point. Note that although we have motivated the City Block MLP above as an
approximation to the standard MLP, the City Block MLP can also be thought of
as special case of radial basis function network.

4 Experimental Results

This section describes experiments using the City Block MLP on a 120-dimensional
representation of the NIST Handwritten Optical Character Recognition database
and on a 2294-dimensional grayscale human face image database. The results in­
dicate that the performance of networks using the approximation is as good as
networks using the exact dot product [Perrone, 1993].

In order to test the performance of the City Block MLP, we simulated the behav­
ior of the NilOOO on a SPARC station in serial. We used the approximation only
on the first layer of weights (i.e. those connecting the inputs to the hidden units)
where the dimensionality is highest and the approximation is most accurate. The
approximation was not used in the second layer of weights (i.e. those connecting
the hidden units to the output units were calculated in serial) since the number of
hidden units was low and therefore do not correspond to a major computational
bottleneck. It should be noted that for a 2 layer MLP in which the number of
hidden units and output units are much lower than the input dimensionality, the

6The dot product between the hidden and the output layers may also be approximated
in the same way but it is not shown here. In fact, the NilOOO could be used to perform all
of the functions required by the network.

VLSI for Implementing Multilayer Perceptrons 753

DATA SET HIDDEN STANDARD CITYBLOCK ENSEMBLE
UNITS FOM FOM CITYBLOCK

Numbers 10 92.1±0.57 87.4±0.83 92.5
Lowercase 20 59.7±1.7 44.4±2.0 62.7
Uppercase 20 60.0±1.8 44.6±4.5 66.4

Table 2: Comparison of MLPs FOM. The FOM is defined as the 100 minus the
number rejected minus 10 time the number incorrect .

majority of the computation is in the calculation of the dot products in the first
weight layer. So even using the approximation only in the first layer will signifi­
cantly accelerate the calculation. Also, the Nil000 on-chip math coprocessor can
perform a low-dimensional, second layer dot product while the high-dimensional,
first layer dot product is being approximated in parallel by the city block units. In
practice, if the number of hidden units is large, the approximation to the dot prod­
uct may also be used in the second weight layer. In the simulations, the networks
used the approximation when calculating the dot product only in the feedforward
phase of the algorithm. For the feedback ward phase (i.e. the error backpropagation
phase), the algorithm was identical to the original backward propagation algorithm.
In other words the approximation was used to calculate the network activity but
the stochastic gradient term was calculated as if the network activity was generated
with the real dot product. This simplification does not slow the calculation because
all the terms needed for the backpropagation phase are calculated in the forward
propagation phase In addition, it allows us to avoid altering the backpropagation
algorithm to incorporate the derivative of the city block approximation. We are
currently working on simulations which use city block calculations in both the for­
ward and backward passes. Since these simulations will use the correct derivative
for the functional form of the City Block MLP, we expect that they will have better
performance. In practice, the price we pay for making the approximation is reduced
performance. We can avoid this problem by increasing the number of hidden units
and thereby allow more flexibility in the network. This increase in size will not
significantly slow the algorithm since the hidden unit activities are calculated in
parallel. In Table 1 and Table 2, we compare the performance of a standard MLP
without the city block approximation to a MLP using the city block approximation
to calculate network activity. In all cases, a population of 10 neural networks were
trained from random initial weight configurations and the means and standard de­
viations were listed. The number of hidden units was chosen to give a reasonable
size network while at the same time reasonably quick training. Training was halted
by cross-validating on an independent hold-out set. From these results, one can
see that the relative performances with and with out the approximation are simi­
lar although the City Block is slightly lower. We also perform ensemble averaging
[Perrone, 1993, Perrone and Cooper, 1993] to further improve the performance of
the approximate networks. These results are given in the last column of the table.
From these data we see that by combining the city block approximation with the
averaging method, we can generate networks which have comparable and sometimes
better performance than the standard MLPs. In addition, because the Nil000 is
running in parallel, there is minimal additional computational overhead for using

754 Michael P. Perrone, Leon N. Cooper

the averaging. 7

5 Discussion

We have described a new radial basis function network architecture which can be
used in high dimensional spaces to approximate the learning characteristics of a
standard MLP without using dot products. The absence of dot products allows us
to implement this new architecture efficiently in parallel on an NilOOO; thus enabling
us to take advantage of the Ni1000's extremely fast classification rates. We have
also presented experimental results on real-world data which indicate that these
high classifications rates can be achieved while maintaining or improving classifica­
tion accuracy. These results illustrate that it is possible to use the inherent high
dimensionality of real-world problems to our advantage.

References

[Perrone, 1993] Perrone, M. P. (1993). Improving Regression Estimation: Averaging
Methods for Variance Reduction with Eztensions to General Convez Measure
Optimization. PhD thesis, Brown University, Institute for Brain and Neural
Systems; Dr. Leon N Cooper, Thesis Supervisor.

[Perrone and Cooper, 1993] Perrone, M. P. and Cooper, L. N. (1993). When net­
works disagree: Ensemble method for neural networks. In Mammone, R. J.,
editor, Artificial Neural Networks for Speech and Vision. Chapman-Hall. Chap­
ter 10.

[Reillyet al., 1982] Reilly, D. L., Cooper, L. N., and Elbaum, C. (1982). A neural
model for category learning. Biological Cybernetics, 45:35-41.

[Rumelhart et al., 1986] Rumelhart, D. E., McClelland, J. L., and the PDP Re­
search Group (1986). Parallel Distributed Processing, Volume 1: Foundations.
MIT Press.

[Scofield et al., 1987] Scofield, C. L., Reilly, D. L., Elbaum, C., and Cooper, L. N.
(1987). Pattern class degeneracy in an unrestricted storage density memory.
In Anderson, D. Z., editor, Neural Information Processing Systems. American
Institute of Physics.

[Sullivan, 1993] Sullivan, M. (1993). Intel and Nestor deliver second-generation
neural network chip to DARPA: Companies launch beta site program. Intel
Corporation News Release. Feb. 12.

[Werbos, 1974] Werbos, P. (1974). Beyond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences. PhD thesis, Harvard University.

7The averaging can also be applied to the standard MLPs with a corresponding im­
provement in performance. However, for serial machines averaging slows calculations by a
factor equal to the number of averaging nets.

