
Template-Based Algorithms for

Connectionist Rule Extraction

Jay A. Alexander and Michael C. Mozer
Department of Computer Science and

Institute for Cognitive Science
University of Colorado

Boulder, CO 80309--0430

Abstract
Casting neural network weights in symbolic terms is crucial for
interpreting and explaining the behavior of a network. Additionally, in
some domains, a symbolic description may lead to more robust
generalization. We present a principled approach to symbolic rule
extraction based on the notion of weight templates, parameterized
regions of weight space corresponding to specific symbolic expressions.
With an appropriate choice of representation, we show how template
parameters may be efficiently identified and instantiated to yield the
optimal match to a unit's actual weights. Depending on the requirements
of the application domain, our method can accommodate arbitrary
disjunctions and conjunctions with O(k) complexity, simple n-of-m
expressions with O(k!) complexity, or a more general class of recursive
n-of-m expressions with O(k!) complexity, where k is the number of
inputs to a unit. Our method of rule extraction offers several benefits
over alternative approaches in the literature, and simulation results on a
variety of problems demonstrate its effectiveness.

1 INTRODUCTION
The problem of understanding why a trained neural network makes a given decision has a
long history in the field of connectionist modeling. One promising approach to this prob­
lem is to convert each unit's weights and/or activities from continuous numerical quantities
into discrete, symbolic descriptions [2, 4, 8]. This type of reformulation, or rule extraction,
can both explain network behavior and facilitate transfer of learning. Additionally, in
intrinsically symbolic domains, there is evidence that a symbolic description can lead to
more robust generalization [4].

610 Jay A. Alexander, Michael C. Mozer

We are interested in extracting symbolic rules on a unit-by-unit basis from connectionist
nets that employ the conventional inner product activation and sigmoidal output functions.
The basic language of description for our rules is that of n-of-m expressions. An n-of-m
expression consists of a list of m subexpressions and a value n such that 1 ~ n ~ m. The
overall expression is true when at least n of the m subexpressions are true. An example of
an n-of-m expression stated using logical variables is the majority voter function
X = 2 of (A, B, C). N-of-m expressions are interesting because they are able to model
behaviors intermediate to standard Boolean OR (n = 1) and AND (n = m) functions.
These intermediate behaviors reflect a limited form of two-level Boolean logic. (To see
why this is true, note that the expression for X above is equivalent to AB + BC + AC.) In a
later section we describe even more general behaviors that can be represented using recur­
sive forms of these expressions. N-of-m expressions fit well with the activation behavior
of sigmoidal units, and they are quite amenable to human comprehension.

To extract an n-of-m rule from a unit's weights, we follow a three-step process. First we
generate a minimal set of candidate templates, where each template is parameterized to
represent a given n-of-m expression. Next we instantiate each template's parameters with
optimal values. Finally we choose the symbolic expression whose instantiated template is
nearest to the actual weights. Details on each of these steps are given below.

2 TEMPLATE-BASED RULE EXTRACTION

2.1 Background

Following McMillan [4], we define a weight template as a parameterized region of weight
space corresponding to a specific symbolic function. To see how weight templates can be
used to represent symbolic functions, consider the weight vector for a sigmoidal unit with
four inputs and a bias:

w = WI w2 w3 w4 b

Now consider the following two template vectors:

t1 = -p P 0 -p J.5p
t2 = P -p P P -D.5p

These templates are parameterized by the variable p. Given a large positive value of p (say
5.0) and an input vector 1 (whose components are approximately 0 and 1), t1 describes the
symbolic expression J of('lz, 12, 14), while t2 describes the symbolic expression
2 of(Ib 12• h. 14), A general description for n-of-m templates of this form is the following:

1. M of the weight values are set to ±p , P > 0; all others are set to O.
(+p is used for normal subexpressions, -p for negated sUbexpressions)

2. The bias value is set to (0.5 + mneg - n)p, where mneg represents the
number of negated subexpressions.

When the inputs are Boolean with values -1 and + 1, the form of the templates is the same,
except the template bias takes the value (J + m - 2n)p. This seemingly trivial difference
turns out to have a significant effect on the efficiency of the extraction process.

Template-Based Algorithms for Connectionist Rule Extraction 611

2.2 Basic extraction algorithm

Generating candidate templates

Given a sigmoidal unit with k inputs plus a bias, the total number of n-of-m expressions
that unit may compute is an exponential function of k:

/c m /c

T = ~ ~ 2m(k) = ~ 2mk! = 2k3/C-1
£.J £.J m £.J (k-m)!(m-l)!

m=ln=1 m=1

For example, T k=1O is 393,660, while T k=20 is over 46 billion. Fortunately we can apply
knowledge of the unit's actual weights to explore this search space without generating a
template for each possible n-of-m expression. Alexander [1] proves that when the -11+1
input representation is used, we need consider at most one template for each possible
choice of n and m. For a given choice of nand m, a template is indicated when
sign(1 + m - 2n) = sign(b). A required template is formed by setting the template weights
corresponding to the m highest absolute value actual weights to sp, where s represents the
sign of the corresponding actual weight. The template bias is set to (1 + m - 2n)p. This
reduces the number of templates required to a polynomial function of k:

Values for T k=1O and T k=20 are now 30 and 110, respectively, making for a very efficient
pruning of the search space. When 011 inputs are used, this simple procedure does not suf­
fice and many more templates must be generated. For this reason, in the remainder of this
paper we focus on the -11+ 1 case and assume the use of symmetric sigmoid functions.

Instantiating template parameters

Instantiating a weight template t requires finding a value for p such that the Euclidean
distance d = lit - wl1 2 is minimized. Letting Uj = 1 if template weight tj is nonzero, Uj = 0
otherwise, the value of p that minimizes this distance for any -11+ 1 template is given by:

/c

L IWjIUj+ (1 +m-2n)b
p* = I:....:· ==-I!...-_____ ~-

m + (1 + m - 2n) 2

Finding the nearest template and checking extraction validity

Once each template is instantiated with its value of p*, the distance between the template
and the actual weight vector is calculated, and the minimal distance template is selected as
the basis for rule extraction. Having found the nearest template t*, we can use its values as
part of a rudimentary check on extraction validity. For example, we can define the
extraction error as 100% x Ilt*-wI1 2/1IwI1 2 to measure how well the nearest symbolic rule
fits the actual weights. We can also examine the value of p* used in t*. Small values of p*
translate into activation levels in the linear regime of the sigmoid functions, compromis­
ing the assumption of Boolean outputs propagating to subsequent inputs.

612 Jay A. Alexander, Michael C. Mozer

2.3 Extending expressiveness

While the n-of-m expressions treated thus far are fairly powerful, there is an interesting
class of symbolic behaviors that cannot be captured by simple n-of-m expressions. The
simplest example of this type of behavior may be seen in the single hidden unit version of
xor described in [6]. In this 2-1-1 network the hidden unit H learns the expression
AND(h 12), while the output unit (which connects to the two inputs as well as to the hid­
den unit) learns the expression AND[OR(h 12),Hj. This latter expression may be viewed
as a nested or recursive form of n-of-m expression, one where some of the m subexpres­
sions may themselves be n-of-m expressions. The following two forms of recursive n-of-m
expressions are linearly separable and are thus computable by a single sigmoidal unit:

OR [Cn-of-m ' COR j
AND [Cn-of-m , CAND j

where Cn-of-m is a nested n-of-m expression (1 S; n S; m)
COR is a nested OR expression (n = 1)
CAND is a nested AND expression (n = m)

These expressions may be seen to generalize simple n-of-m expressions in the same way
that simple n-of-m expressions generalize basic disjunctions and conjunctions.1 We term
the above forms augmented n-of-m expressions because they extend simple n-of-m
expressions with additional disjuncts or conjuncts. Templates for these expressions (under
the -1/+ 1 input representation) may be efficiently generated and instantiated using a pro­
cedure similar to that described for simple n-of-m expressions. When augmented expres­
sions are included in the search, the total number of templates required becomes:

This figure is O(k) worse than for simple n-of-m expressions, but it is still polynomial in k
and is quite manageable for many problems. (Values for T k=1O and Tk=20 are 150 and 1250,
respectively.) A more detailed treatment of augmented n-of-m expressions is given in [1].

3 RELATED WORK
Here we briefly consider two alternative systems for connectionist rule extraction. Many
other methods have been developed; a recent summary and categorization appears in [2].

3.1 McMillan

McMillan described the projection of actual weights to simple weight templates in [4].
McMillan's parameter selection and instantiation procedures are inefficient compared to
those described here, though they yield equivalent results for the classes of templates he
used. McMillan treated only expressions with m S; 2 and no negated sUbexpressions.

1 In fact the nesting may continue beyond one level. Thus sigmoidal units can compute expressions like
OR[AND(Cn_of_m ' CAND), COR]. We have not yet experimented with extensions of this sort.

Template-Based Algorithms for Connectionist Rule Extraction 613

3.2 Towell and Shavlik

Towell and Shavlik [8] use a domain theory to initialize a connectionist network, train the
network on a set of labeled examples, and then extract rules that describe the network's
behavior. To perform rule extraction, Towell and Shavlik first group weights using an iter­
ative clustering algorithm. After applying additional training, they typically check each
training pattern against each weight group and eliminate groups that do not affect the clas­
sification of any pattern. Finally, they scan remaining groups and attempt to express a rule
in purely symbolic n-of-m form. However, in many cases the extracted rules take the form
of a linear inequality involving multiple numeric quantities. For example, the following
rule was extracted from part of a network trained on the promoter recognition task [5]
from molecular biology:

Minus35 " -10 < + 5.0 * nt(@-37 '--T-G--A')

+ 3.1 * nt(@-37 '---GT---')

+ 1.9 * nt(@-37 '----C-CT')

+ 1.5 * nt(@-37 '---C--A-')

- 1.5 * nt(@-37 '------GC')

- 1.9 * nt(@-37 '--CAW---')

- 3.1 * nt(@-37 '--A----C')

where nt() returns the number of true subexpressions,
@-37 locates the subexpressions on the DNA strand,
and "_N indicates a don't-care subexpression.

Towell and Shavlik's method can be expected to give more accurate results than our
approach, but at a cost. Their method is very compute intensive and relies substantially on
access to a fixed set of training patterns. Additionally, it is not clear that their rules are
completely symbolic. While numeric expressions were convenient for the domains they
studied, in applications where one is interested in more abstract descriptions, such expres­
sions may be viewed as providing too much detail, and may be difficult for people to inter­
pret and reason about. Sometimes one wants to determine the nearest symbolic
interpretation of unit behavior rather than a precise mathematical description. Our method
offers a simpler paradigm for doing this. Given these differences, we conclude that both
methods have their place in rule extraction tool kits.

4 SIMULATIONS

4.1 Simple logic problems

We used a group of simple logic problems to verify that our extraction algorithms could
produce a correct set of rules for networks trained on the complete pattern space of each
function. Table 1 summarizes the results.2 The rule-plus-exception problem is defined as
/= AB + 1\B CD; xor-l is the 2-1-1 version of xordescribed in Section 2.3; and xor-2 is
a strictly layered (2-2-1) version of xor [6]. The negation problem is also described in [6];
in this problem one of the four inputs controls whether the other inputs appear normally or
negated at the outputs. (As with xor-l, the network for negation makes use of direct inputJ
output connections.) In addition to the perfect classification performance of the rules, the
large values of p* and small values of extraction error (as defined in Section 2.2) provide
evidence that the extraction process is very accurate.

614 Jay A. Alexander, MichaeL C. Mozer

Hidden Averagep· Extraction Error Patterns
Unit Correctly

Network Penalty Hidden Output Hidden Output Classified
Problem Topology Term Unit(s) Unit(s) Unit(s) Unit(s) by Rules

rule-plus-exception 4-2-1 - 2.72 6.15 0.8% 1.3% 100.0%

xor-l 2-1-1 - 5.68 4.40 0.1 % 0.1 % 100.0 %

xor-2 2-2-1 - 4.34 5.68 0.4% 1.0% 100.0 %

negation 4-3-4 activation 5.40 5.17 0.2% 2.2% 100.0 %

Table 1: Simulation summary for simple logic problems

Symbolic solutions for these problems often come in fonns different from the canonical
fonn of the function. For example, the following rules for the rule-pLus-exception problem
show a level of negation within the network:

H1 OR (A, B, c, D)

H2 = AND (A, B)
o OR (H1' H2)

Example results on xor-J show the expected use of an augmented n-of-m expression:

H OR (1 1 , 1 2)

o OR [AND(I1 , 1 2), H!

4.2 The MONK's problems

We tested generalization perfonnance using the MONK's problems [5,7], a set of three
problems used to compare a variety of symbolic and connectionist learning algorithms. A
summary of these tests appears in Table 2. Our perfonnance was equal to or better than all
of the systems tested in [7] for the monks-J and monks-2 problems. Moreover, the rules
extracted by our algorithm were very concise and easy to understand, in contrast to those
produced by several of the symbolic systems. (The two connectionist systems reported in
[7] were opaque, Le., no rules were extracted.) As an example, consider the following out­
put for the monks-2 problem:

HI 2 of (head_shape round, body_shape round, is_smiling yes,
holding sword, jacket_color red, has_tie yes)

H2 3 of (head_shape round, body_shape round, is_smiling yes,
holding sword, jacket_color red, has_tie not no)

o AND (HI' H2)

The target concept for this problem is exactly 2 of the attributes have their first value.
These rules demonstrate an elegant use of n-of-m expressions to describe the idea of
"exactly 2" as "at least 2 but not 3". The monks-3 problem is difficult due to (intentional)
training set noise, but our results are comparable to the other systems tested in [7].

2 All results in this paper are for networks trained using batch-mode back propagation on the
cross-entropy error function. Training was stopped when outputs were within 0.05 of their target values for each
pattern or a fixed number of epochs (typically 10(0) was reached. Where indicated, a penalty term for non­
Boolean hidden activations or hidden weight decay was added to the main error function. For the breast cancer
problem shown in Table 4.3, hidden rules were extracted first and the output units were retrained briefly before
extracting their rules. Results for the problems in Table 4.3 used leave-one-out testing or 100fold cross-validation
(with 10 different initial orderings) as indicated. All results are averages over 10 replications with different initial
weights.

Template-Based Algorithms for Connectionist Rule Extraction 615

Hidden Training Set Test Set
Unit

Network Penalty #of Perf. of Perf. of #of Perf. of Perf. of
Problem Topology Term Patterns Network Rules Patterns Network Rules

monies-I 17-3--1 decay 124 100.0% 100.0% 432 100.0% 100.0%

monles-2 17-2-1 decay 169 100.0% 100.0% 432 100.0% 100.0%

monks-3 l7"'{)""l - 122 93.4% 93.4% 432 97.2% 97.2%

Table 2: Simulation summary for the MONK's problems

4.3 VCI repository problems

The final set of simulations addresses extraction performance on three real-world
databases from the UCI repository [5]. Table 3 shows that good results were achieved. For
the promoters task, we achieved generalization performance of nearly 88%, compared to
93-96% reported by Towell and Shavlik [8]. However, our results are impressive when
viewed in light of the simplicity and comprehensibility of the extracted output. While
Towell and Shavlik's results for this task included 5 rules like the one shown in Section
3.2, our single rule is quite simple:

promoter = 5 of (@-45 'AA-------TTGA-A-----T------T-----AAA----C')

Results for the house-votes-84 and breast-eaneer-wise problems are especially noteworthy
since the generalization performance of the rules is virtually identical to that of the raw
networks. This indicates that the rules are capturing a significant portion of the computa­
tion being performed by the networks. The following rule was the one most frequently
extracted for the house-votes-84 problem, where the task is to predict party affiliation:

Democrat OR [5 of (V3 , V7 , V9, V1O ' Vll , V12) , v4 1

where V3 voted for adoption-of-the-budget-resolution bill
V4 voted for physician-fee-freeze bill
V7 voted for anti-satellite-test-ban bill
V9 = voted for rnx-missile bill
V1 0 = voted for immigration bill
Vll voted for synfuels-corporation-cutback bill
V12 = voted for education-spending bill

Shown below is a typical rule set extracted for the breast-eaneer-wise problem. Here the
goal is to diagnose a tumor as benign or malignant based on nine clinical attributes.

Malignant = AND (H1 , H2)

Hl = 4 of (thickness> 3, size> 1, adhesion> 1, epithelial> 5,
nuclei> 3, chromatin> 1, normal> 2, mi toses > 1)

H2 = 30f(thickness>6,size>1,shape>1,epithelial>1,
nuclei> 8, normal> 9)

H3 = not used

As suggested by the rules, we used a thermometer (cumulative) coding of the nominally
valued attributes so that less-than or greater-than subexpressions could be efficiently rep­
resented in the hidden weights. Such a representation is often useful in diagnosis tasks. We
also limited the hidden weights to positive values due to the nature of the attributes.

616 Jay A. Alexander, Michael C. Mozer

Training Set Test Set

Network #I of Perf. of Perf. of #I of Perf. of Perf. of
Problem Topology Patterns Network Rules Patterns Network Rules

promoters 2284-1 105 100.0% 95.9% I 94.2% 87.6%

house-votes-84 164-1 387 97.3 % 96.2% 43 95.7% 95.9%

breast-cancer-wisc 81-3-1 630 98.5 % 96.3 % 70 95.8% 95.2%

Table 3: Simulation summary for uel repository problems

Taken as a whole our simulation results are encouraging, and we are conducting further
research on rule extraction for more complex tasks.

5 CONCLUSION
We have described a general approach for extracting various types of n-of-m symbolic
rules from trained networks of sigmoidal units, assuming approximately Boolean activa­
tion behavior. While other methods for interpretation of this sort exist, ours represents a
valuable price/performance point, offering easily-understood rules and good extraction
performance with computational complexity that scales well with the expressiveness
desired. The basic principles behind our approach may be flexibly applied to a
wide variety of problems.

References

[1] Alexander, J. A. (1994). Template-based procedures for neural network interpretation. MS
Thesis. Department of Computer Science, University of Colorado, Boulder, CO.

[2] Andrews, R., Diederich, l, and Tickle, A. B. (1995). A survey and critique of techniques for
extracting rules from trained artificial neural networks. To appear in Fu, L. M. (Ed.),
Knowledge-Based Systems, Special Issue on Knowledge-Based Neural Networks.

[3] Mangasarian, O. L. and Wolberg, W. H. (1990). Cancer diagnosis via linear programming.
SIAM News 23:5, pages 1 & 18.

[4] McMillan, C. (1992). Rule induction in a neural network through integrated symbolic and
subsymbolic processing. PhD Thesis. Department of Computer Science, University of
Colorado, Boulder, CO.

[5] Murphy, P. M. and Aha, D. W. (1994). UCI repository of machine learning databases.
[Machine-readable data repository]. Irvine, CA: University of California, Department of
Information and Computer Science. Monks data courtesy of Sebastian Thrun, promoters data
courtesy of M. Noordewier and J. Shavlik, congressional voting data courtesy of Jeff
Schlimmer, breast cancer data courtesy of Dr. William H. Wolberg (see also [3] above).

[6] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations
by error propagation. In Rumelhart, D. E., McClelland, l L., and the PDP Research Group,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1:
Foundations, pages 318-362. Cambridge, MA: MIT Press.

[7] Thrun, S. B., and 23 other authors (1991). The MONK's problems - A performance comparison
of different learning algorithms. Technical Report CS-CMU-91-197. Carnegie Mellon
University, Pittsburgh, PA.

[8] Towell, G. and Shavlik, J. W. (1992). Interpretation of artificial neural networks: Mapping
knowledge-based neural networks into rules. In Moody, J. E., Hanson, S. J., and Lippmann, R.
P. (Eds.), Advances in Neurallnfonnation Processing Systems, 4:977-984. San Mateo, CA:
Morgan Kaufmann.

