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Abstract 

Multi-class classification problems can be efficiently solved by 
partitioning the original problem into sub-problems involving only two 
classes: for each pair of classes, a (potentially small) neural network is 
trained using only the data of these two classes. We show how to 
combine the outputs of the two-class neural networks in order to obtain 
posterior probabilities for the class decisions. The resulting probabilistic 
pairwise classifier is part of a handwriting recognition system which is 
currently applied to check reading. We present results on real world data 
bases and show that, from a practical point of view, these results compare 
favorably to other neural network approaches. 

1 Introduction 

Generally, a pattern classifier consists of two main parts: a feature extractor and a 
classification algorithm. Both parts have the same ultimate goal, namely to transform a 
given input pattern into a representation that is easily interpretable as a class decision. In 
the case of feedforward neural networks, the interpretation is particularly easy if each class 
is represented by one output unit. For many pattern recognition problems, it suffices that 
the classifier compute the class of the input pattern, in which case it is common practice to 
associate the pattern to the class corresponding to the maximum output of the classifier. 
Other problems require graded (soft) decisions, such as probabilities, at the output of the 
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classifier for further use in higher context levels: in speech or character recognition for 
instance, the probabilistic outputs of the phoneme (character) recognizer are often used by a 
Hidden-Markov-Model algorithm or by some other dynamic programming algorithm to 
compute the most probable word hypothesis. 
In the context of classification, it has been shown that the minimization of the Mean 
Square Error (MSE) yields estimates of a posteriori class probabilities [Bourlard & 
Wellekens, 1990; Duda & Hart, 1973]. The minimization can be performed by a 
feedforward multilayer perceptrons (MLP's) using the backpropagation algorithm, which is 
one of the reasons why MLP's are widely used for pattern recognition tasks. However, 
MLPs have well-known limitations when coping with real-world problems, namely long 
training times and unknown architecture. 
In the present paper, we show that the estimation of posterior probabilities for a K-class 
problem can be performed efficiently using estimates of posterior probabilities for K(K -1 )/2 
two-class sub-problems. Since the number of sub-problems increases as K2, this procedure 
was originally intended for applications involving a relatively small number of classes, 
such as the 10 classes for the recognition of handwritten digits [Knerr et aI., 1992]. In this 
paper we show that this approach is also viable for applications with K» 10. 
The probabilistic pairwise classifier presented in this paper is part of a handwriting 
recognition system, discussed elsewhere [Simon, 1992], which is currently applied to check 
reading. The purpose of our character recognizer is to classify pre-segmented characters from 
cursive handwriting. The probabilistic outputs of the recognizer are used to estimate word 
probabilities. We present results on real world data involving 27 classes, compare these 
results to other neural network approaches, and show that our probabilistic pairwise 
classifier is a powerful tool for computing posterior class probabilities in pattern 
recognition problems. 

2 Probabilistic Outputs from Two-class Classifiers 

Multi-class classification problems can be efficiently solved by "divide and conquer" 
strategies which partition the original problem into a set of K(K-l)/2 two-class problems. 
For each pair of classes (OJ and (OJ, a (potentially small) neural network with a single 
output unit is trained on the data of the two classes [Knerr et aI., 1990, and references 
therein]. In this section, we show how to obtain probabilistic outputs from each of the 
two-class classifiers in the pairwise neural network classifier (Figure 1). 

K(K-I)12 
two-class networks 

inputs 

Figure 1: Pairwise neural network classifier. 



Pairwise Neural Network Classifiers with Probabilistic Outputs 1111 

It has been shown that the \llinimization of the MSE cost function (or likewise a cost 
function based on an entropy measure, [Bridle, 1990]) leads to estimates of posterior 
probabilities. Of course, the quality of the estimates depends on the number and distribution 
of examples in the training set and on the minimization method used. 
In the theoretical case of two classes <01 and <02, each Gaussian distributed, with means 
m 1 and m2, a priori probabilities Pq and Pr2, and equal covariance matrices ~, the 
posterior probability of class <01 given the pattern x is: 

Pr(class=<o\ I X=x) = __________ --'1'----_________ _ 

1 + Pr2 exp( _ !-(2xT~-\(m\-m2) + m!~-\m2 - m T~-lm\)) 
PrJ 2 

(1) 

Thus a single neuron with a sigmoidal transfer function can compute the posterior 
probabilities for the two classes. 
However, in the case of real world data bases, classes are not necessarily Gaussian 
distributed, and therefore the transformation of the K(K-l )/2 outputs of our pairwise neural 
network classifier to posterior probabilities proceeds in two steps. 
In the first step, a class-conditional probability density estimation is performed on the 
linear output of each two-class neural network: for both classes <OJ and <OJ of a given two­
class neural network, we fit the probability density over Vjj (the weighted sum of the inputs 
of the output neuron) to a function. We denote by <Ojj the union of classes <OJ and <OJ. The 
resulting class-conditional densities p(vij I <OJ) and p(Vjj I <OJ) can be transformed to 
probabilities Pr(<Oj I <OJ' /\ (Vij=Vjj» and Pr(<Oj I <Ojj /\ (Vjj=Vjj» via the Bayes rule (note 
that Pr(<Ojj /\ (Vij=Vjj) 1 <OJ) = Pr«Vij=Vjj) I <OJ)): 

p( VjJ" I <OJ) Pr( <OJ) 
Pr(<Oj I <Ojj/\(Vij=Vij» = -----"------

L p(Vjj I <Ok) Pr(<Ok) 
ke{j,j} 

(2) 

It is a central assumption of our approach that the linear classifier output Vij is as 
informative as the input vector x. Hence, we approximate Prij = Pr(<Oj I <Ojj /\ (X=x» by 
Pr(<Oi I <Ojj /\ (V=Vjj». Note that Pji = I-Pjj. 
In the second step, the probabilities Prij are combined to obtain posterior probabilities 
Pr(<Oj I (X=x» for all classes <Oi given a pattern x. Thus, the network can be considered as 
generating an intermediate data representation in the recognition chain, subject to further 
processing [Denker & LeCun, 1991]. In other words, the neural network becomes part of 
the preprocessing and contributes to dimensionality reduction. 

3 Combining the Probabilities Prij of the Two-class Classifiers 
to a posteriori Probabilities 

The set of two-class neural network classifiers discussed in the previous section results in 
probabilities Prjj for all pairs (i, j) with i * j. Here, the task is to express the posterior 
probabilities Pr(<Oj I (X=x» as functions of the Prjj-
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We assume that each pattern belongs to only one class: 

K 

Pr( U Olj I (X=x» = 1 
j=1 

From the definition of Olij. it follows for any given i: 

K K 

Pr(U Olj I (X=x» = Pr( U Olij I (X=x» = 1 
J=I j=l,j*i 

U sing the closed form expression for the probability of the union of N events Ei: 

N N N 

(3) 

(4) 

Pr(U Ei) = L Pr(Ej) + ... + (_I)k.1 L Pr(EhA ... AEh) + ... + (-I)N.lpr(EIA ... AEN) 
i= 1 i= 1 i}< ... <ik 

it follows from (4): 

K 
L Pr(Olij I (X=x» - (K-2) Pr(Oli I (X=x» = 1 (5) 

j=l,j*i 

With 
Pr(OliAOli'A(X=X» Pr(Oli I (X=x» 

Prij = Pr(Oli I OlijA(X=X» = J = --'----~ 
Pr(OlijA(X=X» Pr(Olij I (X=x» 

(6) 

one obtains the final expression for the K posterior probabilities given the K(K-l)12 two­
class probabilities Prji : 

Pr(Oli I (X=x» = __ --"-1 __ _ 

f _1 __ (K-2) 

j=I,#i Prij 

(7) 

In [Refregier et aI., 1991], a method was derived which allows to compute the K posterior 
probabilities from only (K-l) two-class probabilities using the following relation between 
posterior probabilities and two-class probabilities: 

Prij = Pr(Oli I (X=x» 

Prji Pr(Olj I (X=x» 
(8) 

However, this approach has several practical drawbacks. For instance, in practice, the 
quality of the estimation of the posterior probabilities depends critically on the choice of 
the set of (K-l) two-class probabilities, and finding the optimal subset of (K-l) Prij is 
costly, since it has to be performed for each pattern at recognition time. 



Pairwise Neural Network Classifiers with Probabilistic Outputs 1113 

4 Application to Cursive Handwriting Recognition 

We applied the concepts described in the previous sections to the classification of pre­
segmented characters from cursive words originating from real-world French postal checks. 
For cursive word recognition it is important to obtain probabilities at the output of the 
character classifier since it is necessary to establish an ordered list of hypotheses along with 
a confidence value for further processing at the word recognition level: the probabilities can 
be passed to an Edit Distance algorithm [Wagner et at, 1974] or to a Hidden-Markov-Model 
algorithm [Kundu et aI., 1989] in order to compute recognition scores for words. For the 
recognition of the amounts on French postal checks we used an Edit Distance algorithm and 
made extensive use of the fact that we are dealing with a limited vocabulary (28 words). 
The 27 character classes are particularly chosen for this task and include pairs of letters such 
as "fr", "gttl, and "tr" because these combinations of letters are often difficult to pre­
segment. Other characters, such as tlk" and "y" are not included because they do not appear 
in the given 28 word vocabulary. 

0~)(" C.A~ t:; ~"U::l._ r;.., 

~ \\:..~~~ (~tSl\h~~ \J'~ ~~~ 

~~~~~~ 
&.nl' tL'i.upr rm'A 

Figure 2: Some examples of literal amounts from live French postal checks. 

A data base of about 3,300 literal amounts from postal checks (approximately 16,000 
words) was annotated and, based on this annotation, segmented into words and letters using 
heuristic methods [Simon et aI., 1994]. Figure 2 shows some examples of literal amounts. 
The writing styles vary strongly throughout the data base and many checks are difficult to 
read even for humans. Note that the images of the pre-segmented letters may still contain 
some of the ligatures or other extraneous parts and do not in general resemble hand-printed 
letters. The total of about 55,000 characters was divided into three sets: training set 
(20,000), validation set (20,000), and test set (15,000). All three sets were used without 
any further data base cleaning. Therefore, many letters are not only of very bad quality, but 
they are truly ambiguous: it is not possible to recognize them uniquely without word 
context. 

Figure 3: Reference lines indicating upper and lower limit of lower case letters. 

Before segmentation, two reference lines were detected for each check (Figure 3). They 
indicate an estimated upper and lower limit of the lower case letters and are used for 
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nonnalization of the pre-segmented characters (Figure 4) to 10 by 24 pixel matrices with 16 
gray values (Figure 5). This is the representation used as input to the classifiers. 

Figure 4: Segmentation of words into isolated letters (ligatures are removed later). 

Figure 5: Size nonnalized letters: 10 by 24 pixel matrices with 16 gray values. 

The simplest two-class classifier is a single neuron; thus, 351 neurons of the resulting 
pairwise classifier were trained on the training data using the generalized delta rule 
(sigmoidal transfer function). In order to avoid overfitting, training was stopped at the 
minimum of MSE on the validation set. The probability densities P(Vij I IDi) were 
estimated on the validation set: for both classes IDi and IDj of a given neuron, we fitted the 
probability densities over the linear output Vij to a Gaussian. The two-class probabilities 
Prij and Prji were then obtained via Bayes rule. The 351 probabilities Prij were combined 
using equation (7) in order to obtain a posteriori probabilities Pr(IDi I (X=x», i E {1, .. ,27}. 
However, the a priori probabilities for letters as given by the training set are different from 
the prior probabilities in a given word context [Bourlard & Morgan, 1994]. Therefore, we 
computed the posterior probabilities either by using, in Bayes rule, the prior probabilities 
of the letters in the training set, or by assuming that the prior probabilities are equal. In the 
first case, many infonnative letters, for instance those having ascenders or descenders, have 
little chance to be recognized at all due to small a priori probabilities. 
Table 1 gives the recognition perfonnances on the test set for classes assumed to have equal 
a priori probabilities as well as for the true a priori probabilities of the test set. For each 
pattern, an ordered list (in descending order) of posterior class probabilities was generated; 
the recognition perfonnance is given (i) in tenns of percentage of true classes found in first 
position, and (ii) in tenns of average position of the true class in the ordered list. As 
mentioned above, the results of the first column are the most relevant ones, since the 
classifier outputs are subsequently used for word recognition. Note that the recognition rate 
(first position) of isolated letters without context for a human reader can be estimated to be 
around 70% to 80%. 
We compared the results of the pairwise classifier to a number of other neural network 
classification algorithms. First, we trained MLPs with one and two hidden layers and 
various numbers of hidden units using stochastic backpropagation. Here again, training was 
stopped based on the minimum MSE on the validation set. Second, we trained MLPs with 
a single hidden layer using the Softmax training algorithm [Bridle, 1990]. As a third 
approach, we trained 27 MLPs with 10 hidden units each, each MLP separating one class 
from all others. Table 1 gives the recognition perfonnances on the test set. The Softmax 
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training algorithm clearly gives the best results in terms of recognition performance. 
However, the pairwise classifier has three very attractive features for classifier design: 
(i) training is faster than for MLP's by more than one order of magnitude; therefore, many 
different designs (changing pattern representations for instance) can be tested at a small 
computational cost; 
(ii) in the same spirit, adding a new class or modifying the training set of an existing one 
can be done without retraining all two-class classifiers; 
(iii) at least as importantly, the procedure gives more insight into the classification 
problem than MLP's do. 

Classifier A veragePosition First Position A veragePosition First Position 
equal prior probs equal prior probs true prior probs true prior probs 

Pairwise 2.9 48.9 % 2.6 52.2 % 
Classifier 

MLP 3.6 48.9 % 2.7 60.0 % 
(100 hid. units) 

Softmax 2.6 54.9 % 2.2 61.9 % 
(100 hid. units) 

27 MLPs 3.2 41.6 % 2.4 55.8 % 

Table I: Recognition performances on the test set in terms of average position and 
recognition rate (first position) for the various neural networks used. 

Our pairwise classifier is part of a handwriting recognition system which is currently 
applied to check reading. The complete system also incorporates other character recognition 
algorithms as well as a word recognizer which operates without pre-segmentation. The 
result of the complete check recognition chain on a set of test checks is the following: (i) at 
the word level, 83.3% of true words are found in first position; (ii) 64.1 % of well 
recognized literal amounts are found in first position [Simon et al., 1994]. Recognizing 
also the numeral amount, we obtained 80% well recognized checks for 1 % error. 

5 Conclusion 

We have shown how to obtain posterior class probabilities from a set of pairwise classifiers 
by (i) performing class density estimations on the network outputs and using Bayes rule, 
and (ii) combining the resulting two-class probabilities. The application of our pairwise 
classifier to the recognition of real world French postal checks shows that the procedure is a 
valuable tool for designing a recognizer, experimenting with various data representations at 
a small computational cost and, generally, getting insight into the classification problem. 
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