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Abstract 

Many real world learning problems are best characterized by an 
interaction of multiple independent causes or factors. Discover­
ing such causal structure from the data is the focus of this paper. 
Based on Zemel and Hinton's cooperative vector quantizer (CVQ) 
architecture, an unsupervised learning algorithm is derived from 
the Expectation-Maximization (EM) framework. Due to the com­
binatorial nature of the data generation process, the exact E-step 
is computationally intractable. Two alternative methods for com­
puting the E-step are proposed: Gibbs sampling and mean-field 
approximation, and some promising empirical results are presented. 

1 Introduction 

Many unsupervised learning problems fall under the rubric of factorial learning-­
that is, the goal of the learning algorithm is to discover multiple independent causes, 
or factors, that can well characterize the observed data (Barlow, 1989; Redlich, 
1993; Hinton and Zemel, 1994; Saund, 1995). Such learning problems often arise 
naturally in response to the actual process by which the data have been generated. 
For instance, images may be generated by combining multiple objects , or varying 
colors, locations, and poses, with different light sources. Similarly, speech signals 
may result from an interaction of factors such as the tongue position, lip aperture, 
glottal state, communication line, and background noises. The goal of factorial 
learning is to invert this data generation process, discovering a representation that 
will both parsimoniously describe the data and reflect its underlying causes. 

A recent approach to factorial learning uses the Minimum Description Length 
(MDL) principle (Rissanen, 1989) to extract a compact representation of the input 
(Zemel, 1993; Hinton and Zemel, 1994). This has resulted in a learning architecture 
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called Cooperative Vector Quantization (CVQ), in which a set of vector quantiz­
ers cooperates to reproduce the input . Within each vector quantizer a competitive 
learning mechanism operates to select an appropriate vector code to describe the 
input. The CVQ is related to algorithms based on mixture models, such as soft 
competitive clustering, mixtures of experts (Jordan and Jacobs, 1994), and hidden 
Markov models (Baum et al., 1970), in that each vector quantizer in the CVQ is 
itself a mixture model. However, it generalizes this notion by allowing the mixture 
models to cooperate in describing features in the data set, thereby creating a dis­
tributed representations of the mixture components. The learning algorithm for the 
CVQ uses MDL to derive a cost function composed of a reconstruction cost (e.g. 
sum squared error), representation cost (negative entropy of the vector code), and 
model complexity (description length of the network weights), which is minimized 
by gradient descent. 

In this paper we first formulate the factorial learning problem in the framework of 
statistical physics (section 2). Through this formalism, we derive a novel learning 
algorithm for the CVQ based on the Expectation-Maximization (EM) algorithm 
(Dempster et al., 1977) (section 3). The exact EM algorithm is intractable for this 
and related factorial learning problems-however, a tractable mean-field approxi­
mation can be derived. Empirical results on Gibbs sampling and the mean-field 
approximation are presented in section 4. 

2 Statistical Physics Formulation 
The CVQ architecture, shown in Figure 1, is composed of hidden and observable 
units, where the observable units, y, are real-valued, and the hidden units are 
discrete and organized into vectors Si, i = 1, ... , d. The network models a data 
generation process which is assumed to proceed in two stages. First, a factor is 
independently sampled from each hidden unit vector, Sj, according to its prior 
probability density, ?ri. Within each vector the factors are mutually exclusive, i.e. 
if Sij = 1 for some j, then Sik = 0, Vk -# j. The observable is then generated from 

a Gaussian distribution with mean 2:1=1 WiSi. 

Notation: 

d number of vectors 

0 0 0 k number of hidden units per vector 

0 0 0 p number of outputs 

0 51 0 52 ••• 0 Sd 
N number of patterns 

0 0 0 Sij hidden unit j in vector i 

0 0 0 Si vector i of units (Si = [Si1, ... , Sik]) 

Wi weight matrix from Si to output 
VOl V0 2 VOd Y network output (observable) 

Figure 1. The factorial learning architecture. 

Defining the energy of a particular configuration of hidden states and outputs as 

1 d d k 

H(s, y) = "2 lly - L Wi sill 2 - L L Sij log 7rij, 

i=l i=l j=l 

(1) 
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the Boltzmann distribution 
1 

p(s, y) = -Z exp{-11.(s,y)}, 
free 

(2) 

exactly recovers the probability model for the CVQ. The causes or factors are repre­
sented in the multinomial variables Si and the observable in the multivariate Gaus­
sian y. The undamped partition function, Zjree, can be evaluated by summing 
and integrating over all the possible configurations of the system to obtain 

Zjree = ~ 1 exp{ -11.(s, y)}dy = (21l")P/2, 
$ Y 

(3) 

which is constant, independent of the weights. This constant partition function 
results in desirable properties, such as the lack of a Boltzmann machine-like sleep 
phase (Neal, 1992), which we will exploit in the learning algorithm. 

The system described by equation (1)1 can be thought of as a special form of the 
Boltzmann machine (Ackley et al., 1985). Expanding out the quadratic term we see 
that there are pairwise interaction terms between every unit. The evaluation of the 
partition function (3) tells us that when y is unclamped the quadratic term can be 
integrated out and therefore all Si are independent. However, when y is clamped 
all the Si become dependent. 

3 The EM Algorithm 
Given a set of observable vectors, the goal of the unsupervised learning algorithm 
is to find weight matrices such that the network is most likely to have generated 
the data. If the hidden causes for each observable where known, then the weight 
matrices could be easily estimated . However, the hidden causes cannot be inferred 
unless these weight matrices are known. This chicken-and-egg problem can be solved 
by iterating between computing the expectation of the hidden causes given the 
current weights and maximizing the likelihood of the weights given these expected 
causes-the two steps forming the basis of the Expectation-Maximization (EM) 
algorithm (Dempster et al., 1977). 

Formally, from (2) we obtain the expected log likelihood of the parameters ¢/: 

Q(¢,¢/) = (-11.(s,y) -logZjree)c,q, (4) 

where ¢ denotes the current parameters, ¢ = {Wi}?=1, and (-)c,q, denotes expecta­
tion given ¢ and the damped observables. The E-step of EM consists of computing 
this expected log likelihood. As the only random variables are the hidden causes, 
this simplifies to computing the (Si)c and (SiS])c terms appearing in the quadratic 
expansion of 11.. Once these terms have been computed, the M-step consists of 
maximizing Q with respect to the parameters. Setting the derivatives to zero we 
obtain a linear system, 

1 For the remainder of the paper we will ignore the second term in (1), thereby assuming 
equal priors on the hidden states. Relaxing this assumption and estimating priors from 
the data is straightforward. 
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which can be solved via the normal equations, 

where s is the vector of concatenated Si and the subscripts denote matrix size. 

For models in which the observable is a monotonic differentiable function ofLi WiSi, 

i.e. generalized linear models, least squares estimates of the weights for the M-step 
can be obtained iteratively by the method of scoring (McCullagh and NeIder, 1989). 

3.1 E-step: Exact 

The difficulty arises in the E-step of the algorithm. The expectation of hidden unit 
j in vector i given pattern y is: 

P(Sij = 11Y; W) <x P(ylSij = 1;W)1l"ij 
Ii; Ii; Ii; 

<X L·· L .. LP(ylsij = 1, slh = 1, .. . ,Sdjd = 1; W)1l"ij 
jl=l ih,ti=l jd=l 

To compute this expectation it is necessary to sum over all possible configurations of 
the other hidden units. If each vector quantizer has k hidden units, each expectation 
has time complexity of O( kd - l ), i .e. O( N kd ) for a full E-step. The exponential time 
is due inherently to the cooperative nature of the model-the setting of one vector 
only determines the observable if all the other vectors are fixed. 

3.2 E-step: Gibbs sampling 

Rather than summing over all possible hidden unit patterns to compute the ex­
act expectations, a natural approach is to approximate them through a Monte 
Carlo method. As with Boltzmann machines, the CVQ architecture lends itself 
well to Gibbs sampling (Geman and Geman, 1984). Starting from a clamped 
observable y and a random setting of the hidden units {Sj}, the setting of each 
vector is updated in turn stochastically according to its conditional distribution 
Si '" p( sdY, {Sj h;ti; W). Each conditional distribution calculation requires k for­
ward passes through the network, one for each possible state of the vector being 
updated, and k Gaussian distance calculations between the resulting predicted and 
clamped observables. If all the probabilities are bounded away from zero this pro­
cess is guaranteed to converge to the equilibrium distribution of the hidden units 
given the observable. The first and second-order statistics, for (Si)c and (SiS])c re­
spectively, can be collected using the Sij'S visited and p( Si Iy, {Sj h;ti; W) calculated 
during this sampling process. These estimated expectations are then used in the 
E-step. 

3.3 E-step: Mean-field approximation 

Although Gibbs sampling is generally much more efficient than exact calculations, 
it too can be computationally demanding . A more promising approach is to ap­
proximate the intractable system with a tractable mean-field approximation (Parisi , 
1988), and perform the E-step calculation on this approximation . We can write the 
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negative log likelihood minimized by the original system as a difference between the 
damped and undamped free energies: 

Cost -logp(y/W) = -log ~p(y, s/W) 
s 

-log~exp{-'J-l(y,s)} + log~ [ exp{-'J-l(y,s)}dy 
s s Jy 

Fcl - FJree 

The mean-field approximation allows us to replace each free energy in this cost with 
an upper bound approximation CostM F = F:t F - Ffrt'e. Unfortunately, a difference 
of two upper bounds is not generally an upper bound, and therefore minimizing 
CostM F in, for example, mean-field Boltzmann machines does not guarantee that 
we are minimizing an upper bound on Cost. However, for the factorial learning 
architectures described in this paper we have the property that FJree is constant, 
and therefore the mean-field approximation of the cost is an upper bound on the 
exact cost. 

The mean-field approximation can be obtained by approximating the probability 
density given by (1) and (2) by a completely factorized probability density: 

p(s, y) = (21r~P/2 exp{ -~/IY -1L/12} n m:y 
',J 

In this approximation all units are independent: the observables are Gaussian dis­
tributed with mean IL and each hidden unit is binomially distributed with mean 
mij. To obtain the mean-field approximation we solve for the mean values that 
minimize the Kullback-Leibler divergence KC(p,p) == Ep[logp] - Ep[logp]. 

Noting that: Ep[Sij] = mij, Ep[S[j] = mij, Ep[SijSkd = mijmkl, and Ep[SijSik] = 0, 
we obtain the mean-field fixed point equations 

(5) 

where y == l:i WiIDi. The softmax function is the exponential normalized over 
the k hidden units in each IDi vector. The first term inside the softmax has an 
intuitive interpretation as the projection of the error in the observable onto the 
weights of the hidden unit vector i. The more a hidden unit can reduce this error, 
the higher its mean. The second term arises from the fact that Ep[s[j] = mij and 
not Ep[s[j] = m[j. The means obtained by iterating equation (5) are used in the 
E-step by substituting mi for (Si)c and IDiID] for (sisJk 

4 Empirical Results 

Two methods, Gibbs sampling and mean-field, have been provided for computing 
the E-step of the factorial learning algorithm. There is a key empirical question 
that needs to be answered to determine the efficiency and accuracy of each method. 
For Gibbs sampling it is important to know how many samples will provide ro­
bust estimates of the expectations required for the E-step. It is well known that 
for stochastic Boltzmann machines the number of samples needed to obtain good 
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estimates of the gradients is generally large and renders the learning algorithm pro­
hibitively slow. Will this architecture suffer from the same problem? For mean-field 
it is important to know the loss incurred by approximating the true likelihood. We 
explore these questions by presenting empirical results on two small unsupervised 
learning problems. 

The first benchmark problem consists of a data set of 4 x 4 greyscale images gener­
ated by a combination of two factors: one producing a single horizontal line and the 
other, a vertical line (Figure 2a; cf. Zemel, 1993). Using a network with 2 vectors 
of 4 hidden units each, both the Gibbs sampling and mean-field EM algorithms 
converge on a solution after about a dozen steps (Figure 2b). The solutions found 
resemble the generative model of the data (Figure 2c & d). 

a) 

c) d) 

b) 
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Figure 2. Lines Problem. a) Complete data set of 160 patterns. b) Learning 
curves for Gibbs (solid) and mean-field (dashed) forms of the algorithm. c) A 
sample output weight matrix after learning (MSE=1.20). The top vector of hid­
den units has come to represent horizontal lines, and the bottom, vertical lines. 
d) Another typical output weight matrix (MSE=1.78). 

The second problem consists of a data set of 6 x 6 images generated by a combination 
of three shapes-a cross, a diagonal line, and an empty square-each of which can 
appear in one of 16 locations (Figure 3a). The data set of 300 out of 4096 possible 
images was presented to a network with the architecture shown in Figure 3b. After 
30 steps of EM, each consisting of 5 Gibbs samples of each hidden unit, the network 
reconstructed a representation that approximated the three underlying causes of 
the data-dedicating one vector mostly to diagonal lines, one to hollow squares, 
and one to crosses (Figure 3c). 

To assess how many Gibbs samples are required to obtain accurate estimates of the 
expectations for the E-step we repeated the lines problem varying the number of 
samples. Clearly, as the number of samples becomes large the Gibbs E-step becomes 
exact. Therefore we expect performance to asymptote at the performance of the 
exact E-step. The results indicate that, for this problem, 3 samples are sufficient 
to achieve ceiling performance (Figure 4). Surprisingly, a single iteration of the 
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Figure 3. Shapes Problem. a) Sample images from the data set. b) Learning 
architecture used. c) Output weight matrix after learning. 

mean-field equations also performs quite well. 

5 Discussion 

623 

The factorial learning problem for cooperative vector quantizers has been formu­
lated in the EM framework, and two learning algorithms, based on Gibbs sampling 
and mean-field approximation, have been derived. Unlike the Boltzmann machine, 
Gibbs sampling for this architecture seems to require very few samples for adequate 
performance. This may be due to the fact that, whereas the Boltzmann machine 
relies on differences of noisy estimates for its weight changes, due to the constant 
partition function the factorial learning algorithm does not. The mean-field approx­
imation also seems to perform quite well on all problems tested to date . This may 
also be a consequence of the constant partition function which guarantees that the 
mean-field cost is an upper bound on the exact cost. 

The framework can be extended to hidden Markov models (HMMs), showing that 
simple HMMs are a special case of dynamical CVQs, with the general case corre­
sponding to parallel, factorial HMMs. The two principal advantages of such archi­
tectures are (1) unlike the traditional HMM, the state space can be represented as 
a combination of features, and (2) time series generated by multiple sources can 
be modeled. Simulation results on the Gibbs and mean-field EM algorithms for 
factorial HMMs are also promising (Ghahramani, 1995). 
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Figure 4. Comparison of the Gibbs and 
mean-field EM algorithms for the lines data. 
Each data point shows the mean squared 
training error averaged over 10 runs of 20 
EM steps, with standard error bars. For the 
Gibbs curve the abscissa is the number of 
samples per vector of hidden units; for the 
mean-field curve it is the number of iterations 
of equation (5). 
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