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Abstract 

Experiments were performed to reveal some of the computational 
properties of the human motor memory system. We show that 
as humans practice reaching movements while interacting with a 
novel mechanical environment, they learn an internal model of the 
inverse dynamics of that environment. Subjects show recall of this 
model at testing sessions 24 hours after the initial practice. The 
representation of the internal model in memory is such that there 
is interference when there is an attempt to learn a new inverse 
dynamics map immediately after an anticorrelated mapping was 
learned. We suggest that this interference is an indication that 
the same computational elements used to encode the first inverse 
dynamics map are being used to learn the second mapping. We 
predict that this leads to a forgetting of the initially learned skill. 

1 Introduction 

In tasks where we use our hands to interact with a tool, our motor system develops 
a model of the dynamics of that tool and uses this model to control the coupled 
dynamics of our arm and the tool (Shadmehr and Mussa-Ivaldi 1994). In physical 
systems theory, the tool is a mechanical analogue of an admittance, mapping a force 
as input onto a change in state as output (Hogan 1985). In this framework, the 
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Figure 1: The experimental setup. The robot is 
a very low friction planar mechanism powered by 
two torque motors that act on the shoulder and 
elbow joints. Subject grips the end-point of the 
robot which houses a force transducer and moves 
the hand to a series of targets displayed on a moni­
tor facing the subject (not shown) . The function of 
the robot is to produce novel force fields that the 
subject learns to compensate for during reaching 
movements. 

model developed by the motor control system during the learning process needs to 
approximate an inverse of this mapping. This inverse dynamics map is called an 
internal model of the tool. 

We have been interested in understanding the representations that the nervous 
system uses in learning and storing such internal models. In a previous work we 
measured the way a learned internal model extrapolated beyond the training data 
(Shadmehr and Mussa-Ivaldi 1994). The results suggested that the coordinate sys­
tem of the learned map was in intrinsic (e.g., joint or muscles based) rather than in 
extrinsic (e.g., hand based) coordinates. Here we present a mathematical technique 
to estimate the input-output properties of the learned map. We then explore the 
issue of how the motor memory might store two maps which have similar inputs 
but different outputs. 

2 Quantifying the internal model 

In our paradigm, subjects learn to control an artificial tool: the tool is a robot 
manipulandum which has torque motors that can be programmed to produce a 
variety of dynamical environments (Fig. 1). The task for the subject is to grasp 
the end-effector and make point to point reaching movements to a series of targets. 
The environments are represented as force fields acting on the subject's hand, and a 
typical case is shown in Fig. 2A. A typical experiment begins with the robot motors 
turned off. In this "null" environment subjects move their hand to the targets in a 
smooth, straight line fashion. When the force field is introduced, the dynamics of the 
task change and the hand trajectory is significantly altered (Shadmehr and Mussa­
Ivaldi 1994). With practice (typically hundreds of movements), hand trajectories 
return to their straight line path. We have suggested that practice leads to formation 
of an internal model which functions as an inverse dynamics mapping, i.e., from a 
desired trajectory (presumably in terms of hand position and velocity, Wolpert et 
al. 1995) to a prediction of forces that will be encountered along the trajectory. We 
designed a method to quantify these forces and estimate the output properties of 
the internal model. 

If we position a force transducer at the interaction point between the robot and the 
subject, we can write the dynamics of the four link system in Fig. 1 in terms of the 
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following coupled vector differential equations: 

Ir(P)P + Gr(p,p)p = E(p,p) + J'{ F 

III (q)q + GII(q, q)q = C(q, q, q*(t» - f; F 
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(1) 

(2) 
where I and G are inertial and Corriolis/centripetal matrix functions, E is the 
torque field produced by the robot's motors, i.e., the environment, F is the force 
measured at the handle of the robot, C is the controller implemented by the motor 
system of the subject, q*(t) is the reference trajectory planned by the motor system 
of the subject, J is the Jacobian matrix describing the differential transformation 
of coordinates from endpoint to joints, q and p are joint positions of the subject 
and the robot, and the subscripts sand r denote subject or robot matrices. 

In the null environment, i.e., E = ° in Eq. (1), a solution to this coupled system 
is q = q*(t) and the arm follows the reference trajectory (typically a straight hand 
path with a Gaussian tangential velocity profile). Let us name the controller which 
accomplishes this task C = Co in Eq. (2). When the robot motors are producing a 
force field E # 0, it can be shown that the solution is q = q*(t) if and only if the 
new controller in Eq. (2) is C = C1 = Co + f[ J;T E. The internal model composed 
by the subject is C1 - Co, i.e., the change in the controller after some training 
period. We can estimate this quantity by measuring the change in the interaction 
force along a given trajectory before and after training. If we call these functions 
Fo and FI, then we have: 

Fo(q, q, ij, q*(t» J;T(Co - IlIq - Gllq) (3) 

FI(q,q,ij,q*(t» JII-T(Co+f;J;TE-Illq-Gllq) (4) 
The functions Fo and FI are impedances of the subject's arm as viewed from the 
interaction port. Therefore, by approximating the difference FI - Fo, we have an 
estimate of the change in the controller. The crucial assumption is that the reference 
trajectory q*(t) does not change during the training process. 

In order to measure Fo, we had the subjects make movements in a series of en­
vironments. The environments were unpredictable (no opportunity to learn) and 
their purpose was to perturb the controller about the reference trajectory so we 
could measure Fo at neighboring states. Next, the environment in Fig. 2A was 
presented and the subject given a practice period to adapt. After training, FI was 
estimated in a similar fashion as Fo. The difference between these two functions was 
calculated along all measured arm trajectories and the results were projected onto 
the hand velocity space. Due to computer limitations, only 9 trajectories for each 
target direction were used for this approximation. The resulting pattern of forces 
were interpolated via a sum of Gaussian radial basis functions, and are shown in 
Fig. 2B. This is the change in the impedance of the arm and estimates the input­
output property of the internal model that was learned by this subject. We found 
that this subject, which provided some of best results in the test group, learned to 
change the effective impedance of his arm in a way that approximated the imposed 
force field. This would be a sufficient condition for the arm to compensate for the 
force field and allow the hand to follow the desired trajectory. An alternate strategy 
might have been to simply co-contract arm muscles: this would lead to an increased 
stiffness and an ability to resist arbitrary environmental forces. Figure 2B suggests 
that practice led to formation of an internal model specific to the dynamics of the 
imposed force field. 
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Figure 2: Quantification of the change in impedance of a subject's arm after learning a 
force field. A: The force field produced by the robot during the training period. B: The 
change in the subject's arm impedance after the training period, i.e., the internal model. 

2.1 Formation of the internal model in long-term memory 

Here we wished to determine whether subjects retained the internal model in long­
term motor memory. We tested 16 naive subjects. They were instructed to move 
the handle of the robot to a sequence of targets in the null environment. Each 
movement was to last 500 ± 50 msec. They were given visual feedback on the 
timing of each movement. After 600 movements, subjects were able to consistently 
reach the targets in proper time. These trajectories constituted a baseline set. 

Subjects returned the next day and were re-familiarized with the timing of the 
task. At this point a force field was introduced and subjects attempted to per­
form the exact task as before: get to the target in proper time. A sequence of 600 
targets was given. When first introduced, the forces perturbed the subject's trajec­
tories, causing them to deviate from the straight line path. As noted in previous 
work (Shadmehr and Mussa-Ivaldi 1994), these deviations decreased with practice. 
Eventually, subject's trajectories in the presence of the force field came to resemble 
those of the baseline, when no forces were present. The convergence of the trajec­
tories to those performed at baseline is shown for all 16 subjects in Fig. 3A. The 
timing performance of the subjects while moving in the field is shown in Fig. 3B. 

In order to determine whether subjects retained the internal model of the force 
field in long-term memory, we had them return the next day (24 to 30 hours later) 
and once again be tested on a force field. In half of the subjects, the force field 
presented was one that they had trained on in the previous day (call this field 1). 
In the other half, it was a force field which was novel to the subjects, field 2. Field 
2 had a correlation value of -1 with respect to field 1 (i.e., each force vector in 
field 2 was a 180 degree rotation of the respective vector in field 1). Subjects who 
were tested on a field that they had trained on before performed significantly better 
(p < 0.01) than their initial performance (Fig. 4A), signifying retention. However, 
those who were given a field that was novel performed at naive levels (Fig. 4B). 
This result suggested that the internal model formed after practice in a given field 
was (1) specific to that field: performance on the untrained field was no better than 



Interference in Learning Internal Models of Inverse Dynamics in Humans 1121 

0.9 

0.85 

¥ 
.~ 0.8 
:§ 
~ 0.75 
8 

0.7 

-; 0.9 

~ i 08 

~ 0.7 

0.85 

0.6 
A 0 100 200 300 400 500 600 B 0 100 200 300 400 500 600 

Movemen1 N!mber Movement Number 

Figure 3: Measures of performance during the training period (600 movements) for 16 
naive subjects. Short breaks (2 minutes) were given at intervals of 200 movements. A : 
Mean ± standard error (SE) of the correlation coefficient between hand trajectory in a 
null environment (called baseline trajectories, measured before exposure to the field) , and 
trajectory in the force field. Hand trajectories in the field converge to that in the null field 
(i.e. , become straight, with a bell shaped velocity profile). B: Mean ± SE of the movement 
period to reach a target . The goal was to reach the target in 0.5 ± 0.05 seconds. 
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Figure 4: Subjects learned an internal model specific to the field and retained it in long­
term memory. A: Mean ± standard error (SE) of the movement period in the force field 
(called field 1) during initial practice session (upper trace) and during a second session 
24-30 hours after the initial practice (lower trace). B: Movement period in a different 
group of subjects during initial training (dark line) in field 1 and test in an anti-correlated 
field (called field 2) 24-30 hours later (gray line). 

performance recorded in a separate set of naive subjects who were given than field 
in their initial training day; and (2) could be retained, as evidenced by performance 
in the following day. 

2.2 Interference effects of the motor memory 

In our experiment the "tool" that subjects learn to control is rather unusual , nev­
ertheless, subjects learn its inverse dynamics and the memory is used to enhance 
performance 24 hours after its initial acquisition. We next asked how formation 
of this memory affected formation of subsequent internal models. In the previous 
section we showed that when a subject returns a day after the initial training, al­
though the memory of the learned internal model is present , there is no interference 
(or decrement in performance) in learning a new, anti-correlated field . Here we 
show that when this temporal distance is significantly reduced, the just learned 
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Figure 5: Interference in sequential learning of two uncorrelated force fields: The lower 
trace is the mean and standard error of the movement periods of a naive group of subjects 
during initial practice in a force field (called field 1). The upper trace is the movement pe­
riod of another group of naive subjects in field 1, 5 minutes after practicing 400 movements 
in field 2, which was anti-correlated with field 1. 

model interferes with learning of a new field. 

Seven new subjects were recruited. They learned the timing of the task in a null 
environment and in the following day were given 400 targets in a force field (called 
field 1). They showed improvement in performance as before. After a short break 
(5-10 minutes in which they walked about the lab or read a magazine), they were 
given a new field: this field was called field 2 and was anti-correlated with respect 
to field 1. We found a significant reduction (p < 0.01) in their ability to learn field 
2 (Fig. 5) when compared to a subject group which had not initially trained in field 
1. In other words, performance in field 2 shortly after having learned field 1 was 
significantly worse than that of naives. Subjects seemed surprised by their inability 
to master the task in field 2. In order to demonstrate that field 2 in isolation was 
no more difficult to learn than field 1, we had a new set of subjects (n = 5) initially 
learn field 2, then field 1. Now we found a very large decrement in learn ability of 
field 1. 

One way to explain the decrement in performance shown in Fig. 5 is to assume that 
the same "computational elements" that represented the internal model of the first 
field were being used to learn the second field.! In other words, when the second field 
was given, because the forces were opposite to the first field, the internal model was 
badly biased against representing this second field: muscle torque patterns predicted 
for movement to a given target were in the wrong direction. 

In the connectionist literature this is a phenomenon called temporal interference 
(Sutton 1986). As a network is trained, some of its elements acquire large weights 
and begin to dominate the input-output transformation. When a second task is 
presented with a new and conflicting map (mapping similar inputs to different out­
puts), there are large errors and the network performs more poorly than a "naive" 
network. As the network attempts to learn the new task, the errors are fed to each 
element (i .e., pre-synaptic input). This causes most activity in those elements that 

1 Examples of computational elements used by the nervous system to model inverse 
dynamics of a mechanical system were found by Shidara et al. (1993), where it was shown 
that the firing patterns of a set of Purkinje cells in the cerebellum could be reconstructed 
by an inverse dynamic representation of the eye. 
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had the largest synaptic weight. If the learning algorithm is Hebbian , i .e., weights 
change in proportion to co-activation of the pre- and the post-synaptic element, 
then the largest weights are changed the most , effectively causing a loss of what 
was learned in the first task . Therefore, from a computational stand point, we 
would expect that the internal model of field 1 as learned by our subjects should be 
destroyed by learning of field 2. Evidence for "catastrophic interference" in these 
subjects is presented elsewhere in this volume (Brashers-Krug et al. 1995). 

The phenomenon of interference in sequential learning of two stimulus-response 
maps has been termed proactive interference or negative transfer in the psychological 
literature. In humans, interference has been observed extensively in verbal tasks 
involving short-term declarative memory (e.g., tasks involving recognition of words 
in a list or pairing of non-sense syllables, Bruce 1933, Melton and Irwin 1940, 
Sears and Hovland 1941). It has been found that interference is a function of the 
similarity of the stimulus-response maps in the two tasks: if the stimulus in the new 
learning task requires a response very different than what was recently learned, then 
there is significant interference. Interestingly, it has been shown that the amount of 
interference decreases with increased learning (or practice) on the first map (Siipola 
and Israel 1933). 

In tasks involving procedural memory (which includes motor learning, Squire 1986), 
the question of interference has been controversial: Although Lewis et al. (1949) 
reported interference in sequential learning of two motor tasks which involved mov­
ing levers in response to a set of lights, it has been suggested that the interference 
that they observed might have been due to cognitive confusion (Schmidt 1988). 
In another study, Ross (1974) reported little interference in subjects learning her 
motor tasks. 

We designed a task that had little or no cognitive components. We found that 
shortly after the acquisition of a motor memory, that memory strongly interfered 
with learning of a new, anti-correlated input-output mapping. However, this inter­
ference was not significant 24 hours after the memory was initially acquired . One 
possible explanation is that the initial learning has taken place in a temporary and 
vulnerable memory system. With time and/or practice, the information in this 
memory had transferred to long-term storage (Brashers-Krug et al. 1995) . 

Brain imaging studies during motor learning suggest that as subjects become more 
proficient in a motor task, neural fields in the motor cortex display increases in 
activity (Grafton et al. 1992) and new fields are recruited (Kawashima et al. 1994) . 
It has been reported that when a subject attempts to learn two new motor tasks 
successively (in this case the tasks consisted of two sequences of finger movements), 
the neural activity in the motor cortex is lower for the second task , even when the 
order ofthe tasks is reversed (Jezzard et al. 1994). It remains to be seen whether this 
decrement in neural activity in the motor cortex is correlated with the interference 
observed when subjects attempt to learn two different input-output mappings in 
succession (Gandolfo et al. 1994) . 
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