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Abstract 

Random errors and insufficiencies in databases limit the perfor­
mance of any classifier trained from and applied to the database. 
In this paper we propose a method to estimate the limiting perfor­
mance of classifiers imposed by the database. We demonstrate this 
technique on the task of predicting failure in telecommunication 
paths. 

1 Introduction 

Data collection for a classification or regression task is prone to random errors, 
e.g. inaccuracies in the measurements of the input or mis-labeling of the output. 
Missing or insufficient data are other sources that may complicate a learning task 
and hinder accurate performance of the trained machine. These insufficiencies of 
the data limit the performance of any learning machine or other statistical tool 
constructed from and applied to the data collection - no matter how complex the 
machine or how much data is used to train it. 

In this paper we propose a method for estimating the limiting performance of learn­
ing machines imposed by the quality of the database used for the task. The method 
involves a series of learning experiments. The extracted result is, however, indepen­
dent of the choice of learning machine used for these experiments since the estimated 
limiting performance expresses a characteristic of the data. The only requirements 
on the learning machines are that their capacity (VC-dimension) can be varied and 
can be made large, and that the learning machines with increasing capacity become 
capable of implementing any function. 
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We have applied the technique to data collected for the purpose of predicting failures 
in telecommunication channels of the AT&T network. We extracted information 
from one of AT&T's large databases that continuously logs performance parame­
ters of the network. The character and amount of data comes to more material 
than humans can survey. The processing of the extracted information is therefore 
automated by learning machines. 

We conjecture that the quality of the data imposes a limiting error rate on any 
learning machine of,... 25%, so that even with an unlimited amount of data, and an 
arbitrarily complex learning machine, the performance for this task will not exceed 
,... 75% correct. This conjecture is supported by experiments. 

The relatively high noise-level of the data, which carries over to a poor performance 
of the trained classifier, is typical for many applications: the data collection was 
not designed for the task at hand and proved inadequate for constructing high 
performance classifiers. 

2 Basic Concepts of Machine Learning 

We can picture a learning machine as a device that takes an unknown input vector 
and produces an output value. More formally, it performs some mapping from an 
input space to an output space. The particular mapping it implements depends of 
the setting of the internal parameters of the learning machine. These parameters 
are adjusted during a learning phase so that the labels produced on the training 
set match, as well as possible, the labels provided. The number of patterns that 
the machine can match is loosely called the "capacity" of the machine. Generally, 
the capacity of a machine increases with the number of free parameters. After 
training is complete, the generalization ability of of the machine is estimated by its 
performance on a test set which the machine has never seen before. 

The test and training error depend on both the the number of training examples 
I, the capacity h of the machine, and, of course, how well suited the machine is to 
implement the task at hand. Let us first discuss the typical behavior of the test 
and training error for a noise corrupted task as we vary h but keep the amount I of 
training data fixed. This scenario can, e.g., be obtained by increasing the number 
of hidden units in a neural network or increasing the number of codebook vectors 
in a Learning Vector Quantization algorithm [6]. Figure la) shows typical training 
and test error as a function of the capacity of the learning machine. For h < I we 
have many fewer free parameters than training examples and the machine is over 
constrained. It does not have enough complexity to model the regularities of the 
training data, so both the training and test error are large (underfitting). As we 
increase h the machine can begin to fit the general trends in the data which carries 
over to the test set, so both error measures decline. Because the performance of the 
machine is optimized on only part of the full pattern space the test error will always 
be larger than the training error. As we continue to increase the capacity of the 
learning machine the error on the training set continues to decline, and eventually 
it reaches zero as we get enough free parameters to completely model the training 
set. The behavior of the error on the test set is different. Initially it decreases, 
but at some capacity, h*, it starts to rise. The rise occurs because the now ample 
resources of the training machine are applied to learning vagaries of the training 
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Figure 1: Errors as function of capacity and training set size. Figure la) shows 
characteristic plots of training and test error as a function of the learning machine 
capacity for fixed training set size. The test error reaches a minimum at h = h* 
while the training error decreases as h increases. Figure Ib) shows the training and 
test errors at fixed h for varying I. The dotted line marks the asymptotic error Eoo 
for infinite I. Figure lc) shows the asymptotic error as a function of h. This error 
is limited from below by the intrinsic noise in the data. 

set, which are not reproduced in the test set (overfitting). Notice how in Figure la) 
the optimal test error is achieved at a capacity h* that is smaller than the capacity 
for which zero error is achieved on the training set. The learning machine with 
capacity h* will typically commit errors on misclassified or outlying patterns of the 
training set. 

We can alternatively discuss the error on the test and training set as a function 
of the training set size I for fixed capacity h of the learning machine. Typical 
behavior is sketched in Figure Ib) . For small I we have enough free parameters to 
completely model the training set, so the training error is zero. Excess capacity 
is used by the learning machine to model details in the training set, leading to a 
large test error. As we increase the training set size I we train on more and more 
patterns so the test error declines. For some critical size of the training set, Ie, the 
machine can no longer model all the training patterns and the training error starts 
to rise. As we further increase I the irregularities of the individual training patterns 
smooth out and the parameters of the learning machine is more and more used to 
model the true underlying function . The test error declines, and asymptotically 
the training and test error reach the same error value Eoo . This error value is the 
limiting performance of the given learning machine to the task . In practice we never 
have the infinite amount of training data needed to achieve Eoo. However, recent 
theoretical calculations [8, 1, 2, 7, 5] and experimental results [3] have shown that 
we can estimate Eoo by averaging the training and test errors for I> Ie. This means 
we can predict the optimal performance of a given machine. 

For a given type of learning machine the value of the asymptotic error Eoo of 
the machine depends on the quality of the data and the set of functions it can 
implement. The set of available functions increases with the capacity of the machine: 
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low capacity machines will typically exhibit a high asymptotic error due to a big 
difference between the true noise-free function of the patterns and the function 
implemented by the learning machine, but as we increase h this difference decreases. 
If the learning machine with increasing h becomes a universal machine capable of 
modeling any function the difference eventually reaches zero, so the asymptotic 
error Eoo only measures the intrinsic noise level of the data. Once a capacity of 
the machine has been reached that matches the complexity of the true function 
no further improvement in Eoo can be achieved. This is illustrated in Figure lc). 
The intrinsic noise level of the data or the limiting performance of any learning 
machine may hence be estimated as the asymptotic value of Eoo as obtained for 
asymptotically universal learning machines with increasing capacity applied to the 
task. This technique will be illustrated in the following section. 

3 Experimental Results 

In this section we estimate the limiting performance imposed by the data of any 
learning machine applied to the particular prediction task. 

3.1 Task Description 

To ensure the highest possible quality of service, the performance parameters of 
the AT&T network are constantly monitored. Due to the high complexity of the 
network this performance surveillance is mainly corrective: when certain measures 
exceed preset thresholds action is taken to maintain reliable, high quality service. 
These reorganizations can lead to short, minor impairments of the quality of the 
communication path. In contrast, the work reported here is preventive: our ob­
jective is to make use of the performance parameters to form predictions that are 
sufficiently accurate that preemptive repairs of the channels can be made during 
periods of low traffic. 

In our study we have examined the characteristics of long-distance, 45 Mbitsfs 
communication paths in the domestic AT&T network. The paths are specified from 
one city to another and may include different kinds of physical links to complete 
the paths. A path from New York City to Los Angeles might include both optical 
fiber and coaxial cable. To maintain high-quality service, particular links in a path 
may be switched out and replaced by other, redundant links. 

There are two primary ways in which performance degradation is manifested in the 
path. First is the simple bit-error rate, the fraction of transmitted bits that are not 
correctly received at the termination of the path. Barring catastrophic failure (like 
a cable being cut), this error rate can be measured by examining the error-checking 
bits that are transmitted along with the data. The second instance of degrada­
tion, ''framing error" , is the failure of synchronization between the transmitter and 
receiver in a path. A framing error implies a high count of errored bits. 

In order to better characterize the distribution of bit errors, several measures are 
historically used to quantify the path performance in a 15 minutes interval. These 
measures are: 

Low-Rate The number of seconds with exactly 1 error. 
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Figure 2: Errors as function of time. The 3 top patterns are members of the 
"No-Trouble" class. The 3 bottom ones are members of the "Trouble" class. Errors 
are here plotted as mean values over hours. 

Medium-Rate The number of seconds with more than one but less than 45 errors. 

High-Rate The number of seconds with 45 or more errors, corresponding to a bit 
error rate of at least 10-6 • 

Frame-Error The number of seconds with a framing error. A second with a frame­
error is always accompanied by a second of High-Rate error. 

Although the number of seconds with the errors described above in principle could 
be as high as 900, any value greater than 255 is automatically clipped back to 255 
so that each error measure value can be stored in 8 bits. 

Daily data that include these measures are continuously logged in an AT&T 
database that we call Perf(ormance)Mon(itor). Since a channel is error free most of 
the time, an entry in the database is only made if its error measures for a 15 minute 
period exceed fixed low thresholds, e.g. 4 Low-Rate seconds, 1 Medium- or High­
Rate second, or 1 Frame-Error. In our research we "mined" PerfMon to formulate a 
prediction strategy. We extracted examples of path histories 28 days long where the 
path at day 21 had at least 1 entry in the PerfMon database. We labeled the exam­
ples according to the error-measures over the next 7 days. If the channel exhibited 
a 15-minute period with at least 5 High-Rate seconds we labeled it as belonging to 
the class "Trouble". Otherwise we labeled it as member of "No-Trouble" . 

The length of the history- and future-windows are set somewhat arbitrarily. The 
history has to be long enough to capture the state of the path but short enough 
that our learning machine will run in a reasonable time. Also the longer the history 
the more likely the physical implementation of the path was modified so the error 
measures correspond to different media. Such error histories could in principle be 
eliminated from the extracted examples using the record of the repairs and changes 
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of the network. The complexity of this database, however, hinders this filtering of 
examples. The future-window of7 days was set as a design criterion by the network 
system engineers. 

Examples of histories drawn from PerfMon are shown in Figure 2. Each group of 
traces in the figure includes plots of the 4 error measures previously described. The 
3 groups at the top are examples that resulted in No-Trouble while the examples 
at the bottom resulted in Trouble. Notice how bursty and irregular the errors are, 
and how the overall level of Frame- and High-Rate errors for the Trouble class 
seems only slightly higher than for the No-Trouble class, indicating the difficulty of 
the classification task as defined from the database PerfMon. PerfMon constitutes, 
however, the only stored information about the state of a given channel in its entirety 
and thus all the knowledge on which one can base channel end-to-end predictions: 
it is impossible to install extra monitoring equipment to provide other than the 4 
mentioned end-to-end error measures. 

The above criteria for constructing examples and labels for 3 months of PerfMon 
data resulted in 16325 examples from about 900 different paths with 33.2% of the 
examples in the class Trouble. This means, that always guessing the label of the 
largest class, No-Trouble, would produce an error rate of about 33%. 

3.2 Estimating Limiting Performance 

The 16325 path examples were randomly divided into a training set of 14512 ex­
amples and a test set of 1813 examples. Care was taken to ensure that a path only 
contributes to one of the sets so the two sets were independent, and that the two 
sets had similar statistical properties. 

Our input data has a time-resolution of 15 minutes. For the results reported here 
the 4 error measures of the patterns were subsampled to mean values over days 
yielding an input dimensionality of 4 x 21. 

We performed two sets of independent experiments. In one experiment we used 
fully connected neural networks with one layer of hidden units. In the other we 
used LVQ learning machines with an increasing number of codebook vectors. Both 
choices of machine have two advantages: the capacity of the machine can easily be 
increased by adding more hidden units, and by increasing the number of hidden 
units or number of codebook vectors we can eventually model any mapping [4]. We 
first discuss the results with neural networks. 

Baseline performance was obtained from a threshold classifier by averaging all the 
input signals and thresholding the result. The training data was used to adjust 
the single threshold parameter. With this classifier we obtained 32% error on the 
training set and 33% error on the test set. The small difference between the two error 
measures indicate statistically induced differences in the difficulty of the training 
and test sets. An analysis of the errors committed revealed that the performance 
of this classifier is almost identical to always guessing the label of the largest class 
"No-Trouble": close to 100% of the errors are false negative. 

A linear classifier with about 200 weights (the network has two output units) ob­
tained 28% error on the training set and 32% error on the test set. 
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Figure 3: a) Measured classification errors for neural networks with increasing 
number of weights (capacity). The mean value between the test and training error 
estimates the performance of the given classifier trained with unlimited data. b) 
Measured classification errors for LVQ classifiers with increasing number of code­
book vectors. 

Further experiments exploited neural nets with one layer of respectively 3, 5, 7, 10, 
15, 20, 30, and 40 hidden units. All our results are summarized in Figure 3a). This 
figure illustrates several points mentioned in the text above. As the complexity of 
the network increases, the training error decreases because the networks get more 
free parameters to memorize the data. Compare to Figure 1a). The test error also 
decreases at first, going through a minimum of 29% at the network with 5 hidden 
units. This network apparently has a capacity that best matches the amount and 
character of the available training data. For higher capacity the networks overfit 
the data at the expense of increased error on the test set. 

Figure 3a) should also be compared to Figure 1c). In Figure 3a) we plotted approx­
imate values of Eoo for the various networks - the minimal error of the network 
to the given task. The values of Eoo are estimated as the mean of the training and 
test errors. The value of Eoo appears to flatten out around the network with 30 
units, asymptotically reaching a value of 24% error. 

An asymptotic Eoo-value of 25% was obtained from LVQ-experiments with increas­
ing number of codebook vectors. These results are summarized in Figure 3b). We 
therefore conjecture that the intrinsic noise level of the task is about 25%, and this 
number is the limiting error rate imposed by the quality of the data on any learning 
machine applied to the task. 
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4 Conclusion 

In this paper we have proposed a method for estimating the limits on performance 
imposed by the quality of the database on which a task is defined. The method 
involves a series of learning experiments. The extracted result is, however, indepen­
dent of the choice of learning machine used for these experiments since the estimated 
limiting performance expresses a characteristic of the data. The only requirements 
on the learning machines are that their capacity can be varied and be made large, 
and that the machines with increasing capacity become capable of implementing 
any function. In this paper we have demonstrated the robustness of our method to 
the choice of classifiers: the result obtained with neural networks is in statistical 
agreement with the result obtained for LVQ classifiers. 

Using the proposed method we have investigated how well prediction of upcoming 
trouble in a telecommunication path can be performed based on information ex­
tracted from a given database. The analysis has revealed a very high intrinsic noise 
level of the extracted information and demonstrated the inadequacy of the data to 
construct high performance classifiers. This study is typical for many applications 
where the data collection was not necessarily designed for the problem at hand. 
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