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Abstract 

Hinton [6] proposed that generalization in artificial neural nets 
should improve if nets learn to represent the domain's underlying 
regularities . Abu-Mustafa's hints work [1] shows that the outputs 
of a backprop net can be used as inputs through which domain­
specific information can be given to the net . We extend these ideas 
by showing that a backprop net learning many related tasks at the 
same time can use these tasks as inductive bias for each other and 
thus learn better . We identify five mechanisms by which multitask 
backprop improves generalization and give empirical evidence that 
multi task backprop generalizes better in real domains. 

1 INTRODUCTION 

You and I rarely learn things one at a time, yet we often ask our programs to-it 
must be easier to learn things one at a time than to learn many things at once. 
Maybe not. The things you and I learn are related in many ways . They are 
processed by the same sensory apparatus, controlled by the same physical laws, 
derived from the same culture, ... Perhaps it is the similarity between the things 
we learn that helps us learn so well. What happens when a net learns many related 
functions at the same time? Will the extra information in the teaching signal of the 
related tasks help it learn better? 

Section 2 describes five mechanisms that improve generalization in backprop nets 
trained simultaneously on related tasks. Section 3 presents empirical results from 
a road-following domain and an object-recognition domain where backprop with 
multiple tasks improves generalization 10-40%. Section 4 briefly discusses when 
and how to use multitask backprop. Section 5 cites related work and Section 6 
outlines directions for future work. 
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2 MECHANISMS OF MULTITASK BACKPROP 

We identified five mechanisms that improve generalization in backprop nets trained 
simultaneously on multiple related tasks. The mechanisms all derive from the sum­
ming of error gradient terms at the hidden layer from the different tasks. Each 
exploits a different relationship between the tasks. 

2.1 Data Amplification 

Data amplification is an effective increase in sample size due to extra information 
in the training signal of related tasks. There are two types of data amplification. 

2.1.1 Statistical Data Amplification 

Statistical amplification, occurs when there is noise in the training signals. Consider 
two tasks, T and T', with independent noise added to their training signals, that 
both benefit from computing a feature F of the inputs. A net learning both T and 
T' can, if it recognizes that the two tasks share F, use the two training signals to 
learn F better by averaging F through the noise. The simplest case is when T = T', 
i.e., when the two outputs are independently corrupted versions of the same signal. 

2.1.2 Blocking Data Amplification 

The 2nd form of data amplification occurs even if there is no noise. Consider two 
tasks, T and T', that use a common feature F computable from the inputs, but 
each uses F for different training patterns. A simple example is T = A OR F 
and T' = NOT(A) OR F. T uses F when A = 0 and provides no information 
about F when A = 1. Conversely, T' provides information about F only when 
A = 1. A net learning just T gets information about F only on training patterns 
for which A = 0, but is blocked when A = 1. But a net learning both T and T' 
at the same time gets information about F on every training pattern; it is never 
blocked. It does not see more training patterns, it gets more information for each 
pattern. If the net learning both tasks recognizes the tasks share F, it will see a 
larger sample of F. Experiments with blocked functions like T and T' (where F is 
a hard but learnable function of the inputs such as parity) indicate backprop does 
learn common subfeatures better due to the larger effective sample size. 

2.2 Attribute Selection 

Consider two tasks, T and T', that use a common subfeature F. Suppose there 
are many inputs to the net, but F is a function of only a few of the inputs. A 
net learning T will,_ if there is limited training data and/or significant noise, have 
difficulty distinguishing inputs relevant to F from those irrelevant to it. A net 
learning both T and T', however, will better select the attributes relevant to F 
because data amplification provides better training signals for F and that allows it 
to better determine which inputs to use to compute F. (Note: data amplification 
occurs even when there is no attribute selection problem. Attribute selection is a 
consequence of data amplification that makes data amplification work better when 
a selection problem exists.) We detect attribute selection by looking for connections 
to relevant inputs that grow stronger compared to connections for irrelevant inputs 
when multiple tasks are trained on the net. 
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2.3 Eavesdropping 

Consider a feature F, useful to tasks, T and T', that is easy to learn when learning 
T, but difficult to learn when learning T' because T' uses F in a more complex 
way. A net learning T will learn F, but a net learning just T' may not. If the 
net learning T' also learns T, T' can eavesdrop on the hidden layer learned for T 
( e.g., F) and thus learn better. Moreover, once the connection is made between 
T' and the evolving representation for F, the extra information from T' about F 
will help the net learn F better via the other mechanisms. The simplest case of 
eavesdropping is when T = F. Abu-Mostafa calls these catalytic hints[l]. In this 
case the net is being told explicitly to learn a feature F that is useful to the main 
task. Eavesdropping sometimes causes non-monotonic generalization curves for the 
tasks that eavesdrop on other tasks. This happens when the eavesdropper begins 
to overtrain, but then finds something useful learned by another task, and begins 
to perform better as it starts using this new information. 

2.4 Representation Bias 

Because nets are initialized with random weights, backprop is a stochastic search 
procedure; multiple runs rarely yield identical nets. Consider the set of all nets (for 
fixed architecture) learnable by backprop for task T. Some of these generalize better 
than others because they better "represent" the domain's regularities. Consider one 
such regularity, F, learned differently by the different nets. Now consider the set 
of all nets learnable by backprop for another task T' that also learns regularity F. 
If T and T' are both trained on one net and the net recognizes the tasks share F, 
search will be biased towards representations of F near the intersection of what 
would be learned for T or T' alone. We conjecture that representations of F near 
this intersection often better capture the true regularity of F because they satisfy 
more than one task from the domain. 

Representations of F Findable by Backprop 

A form of representation bias that is easier to experiment with occurs when the 
representations for F sampled by the two tasks are different minima. Suppose 
there are two minima, A and B, a net can find for task T. Suppose a net learning 
task T' also has two minima, A and C. Both share the minima at A (i.e., both would 
perform well if the net entered that region of weight space), but do not overlap at 
Band C. We ran two experiments. In the first, we selected the minima so that 
nets trained on T alone are equally likely to find A or B, and nets trained on T' 
alone are equally likely to find A or C. Nets trained on both T and T' usually fall 
into A for both tasks. 1 Tasks prefer hidden layer representations that other tasks 
prefer. 

In the second experiment we selected the minima so that T has a strong preference 

lIn these experiments the nets have sufficient capacity to find independent minima for 
the tasks. They are not forced to share the hidden layer representations. But because 
the initial weights are random, they do initially share the hidden layer and will separate 
the tasks (i.e., use independent chunks of the hidden layer for each task) only if learning 
causes them to. 
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for B over A: a net trained on T always falls into B. T', however, still has no 
preference between A or C. When both T and T' are trained on one net, T falls 
into B as expected: the bias from T' is unable to pull it to A. Surprisingly, T' 
usually falls into C, the minima it does not share with T! T creates a "tide" in the 
hidden layer representation towards B that flows away from A. T' has no preference 
for A or C, but is subject to the tide created by T. Thus T' usually falls into C; it 
would have to fight the tide from T to fall into A. Tasks prefer NOT to use hidden 
layer representations that other tasks prefer NOT to use. 

2.5 How the Mechanisms are Related 

The "tide" mentioned while discussing representation bias results from the aggre­
gation of error gradients from multiple tasks at the hidden layer. It is what makes 
the five mechanisms tick. It biases the search trajectory towards better performing 
regions of weight space. Because the mechanisms arise from the same underlying 
cause, it easy for them to act in concert. Their combined effect can be substantial. 

Although the mechanisms all derive from gradient summing, they are not the same. 
Each emphasizes a different relationship between tasks and has different effects on 
what is learned. Changes in architecture, representation, and the learning procedure 
affect the mechanisms in different ways. One particularly noteworthy difference 
between the mechanisms is that if there are minima, representation bias affects 
learning even with infinite sample size. The other mechanisms work only with finite 
sample size: data amplification (and thus attribute selection) and eavesdropping 
are beneficial only when the sample size is too small for the training signal for one 
task to provide enough information to the net for it to learn good models. 

3 EMPIRICAL RESULTS 

Experiments on carefully crafted test problems verify that each of the mechanisms 
can work. 2 These experiments, however, do not indicate how effective multitask 
backprop is on real problems: tweaking the test problems alters the size of the 
effects. Rather than present results for contrived problems, we present a more con­
vincing demonstration of multi task backprop by testing it on two realistic domains. 

3.1 1D-ALVINN 

ID-ALVINN uses a road image simulator developed by Pomerleau. It was modified 
to generate I-D road images comprised of a single 32-pixel horizontal scan line 
instead of the original 2-D 30x32-pixel image. This was done to speed learning to 
allow thorough experimentation. ID-ALVINN retains much of the complexity of 
the original 2-D domain-the complexity lost is road curvature and that due to the 
smaller input (960 pixels vs. 32 pixels). The principle task in ID-ALVINN is to 
predict steering direction. Eight additional tasks were used for multitask backprop: 

• whether the road is one or two lanes • location of centerline (2-lane roads only) 
• location of left edge of road • location of right edge of road 
• location of road center • intensity of road surface 
• intensity of region bordering road • intensity of centerline (2-lane roads only) 

2We have yet to determine how to directly test the hypothesis that representations 
for F in the intersection of T and T' perform better. Testing this requires interpreting 
representations learned for real tasks; experiments on test problems demonstrate only that 
search is biased towards the intersection, not that the intersection is the right place to be. 



Learning Many Related Tasks at the Same Time with Backpropagation 661 

Table 1 shows the performance of single and multitask backprop (STB and MTB, 
respectively) on 1D-ALVINN using nets with one hidden layer. The MTB net has 
32 inputs, 16 hidden units, and 9 outputs. The 36 STB nets have 32 inputs, 2, 4, 
8 or 16 hidden units, and 1 output. A similar experiment using nets with 2 hidden 
layers containing 2, 4, 8, 16, or 32 hidden units per layer for STB and 32 hidden 
units per layer for MTB yielded comparable results. The size of the MTB nets is 
not optimized in either experiment. 

Table 1: Performance of STB and MTB with One Hidden Layer on 1D-ALVINN 

II ROOT-MEAN SQUARED ERROR ON TEST SET 
TASK Single Task Backprop MTB % Change % Change 

2HU T 4HU I 8HU f 16HU 16HU Best STB Mean STB 

1 or 2 Lanes .201 .209 .207 .178 .156 14.1 27.4 
Left Edge .069 .071 .073 .073 .062 11.3 15.3 
Right Edge .076 .062 .058 .056 .051 9.8 23.5 
Line Center .153 .152 .152 .152 .151 0.7 0.8 
Road Center .038 .037 .039 .042 .034 8.8 14.7 
Road Greylevel .054 .055 .055 .054 .038 42.1 43.4 
Edge Greylevel .037 .038 .039 .038 .038 -2.6 0.0 
Line Greylevel .054 .054 .054 .054 .054 0.0 0.0 
Steering .093 .069 .087 .072 .058 19.0 38.4 

The entries under the STB and MTB headings are the peak generalization error 
for nets of the specified size. The italicized STB entries are the STB runs that 
yielded best performance. The last two columns compare STB and MTB. The first 
is the percent difference between MTB and the best STB run. Positive percentages 
indicate MTB performs better. This test is biased towards STB because it compares 
a single run of MTB on an unoptimized net size with several independent runs of 
STB that use different random seeds and are able to find near-optimal net size. The 
last column is the percent difference between MTB and the average STB. Note that 
on the important steering task, MTB outperforms STB 20-40%. 

3.2 ID-DOORS 

To test multitask backprop on a real problem, we created an object recognition 
domain similar in some respects to 1D-ALVINN. In 1D-DOORS the main tasks 
are to locate doorknobs and recognize door types (single or double) in images of 
doors collected with a robot-mounted camera. Figure 1 shows several door images. 
As with 1D-ALVINN, the problem was simplified by using horizontal stripes from 
image, one for the green channel and one for the blue channel. Each stripe is 30 
pixels wide (accomplished by applying Gaussian smoothing to the original 150 pixel 
wide image) and occurs at the vertical location of the doorknob. 10 tasks were used: 

• horizontal location of doorknob • single or double door 
• horizontal location of doorway center • width of doorway 
• horizontal location of left door jamb • horizontal location of right door jamb 
• width of left door jamb • width of right door jamb 
• horizontal location of left edge of door • horizontal location of right edge of door 

The difficulty of 1D-DOORS precludes running as exhaustive a set of experiments 
as with 1D-ALVINN: runs were done only for the two most important and difficult 
tasks: doorknob location and door type. STB was tested on nets using 6, 24, and 
96 hidden units. MTB was tested on a net with 120 hidden units. The results 
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Figure 1: Sample Doors from the ID-DOORS Domain 

are in Table 2. STB generalizes 35-45% worse than MTB on these tasks. Less 
thorough experiments on the other eight tasks suggest MTB probably always yields 
performance equal to or better than STB. 

Table 2: Performance of STB and MTB on ID-DOORS. 

RMS ERROR ON TEST SET 
TASK 

Doorknob Loc 
Door Type 

4 DISCUSSION 

In our experience, multitask backprop usually generalizes better than single task 
backprop. The few cases where STB has been better is on simpler tasks, and there 
the difference between MTB and STB was small. Multitask backprop appears to 
provide the most benefit on hard tasks. MTB also usually learns in fewer epochs 
than STB. When all tasks must be learned, MTB is computationally more efficient 
than training single nets. When few tasks are important, however, STB is usually 
more efficient (but also less accurate). 

Tasks do not always learn at the same rate. It is important to watch the training 
curve of each MTB task individually and stop training each task when its per­
formance peaks. The easiest way to do this to take a snapshot of the net when 
performance peaks on a task of interest. MTB does not mean one net should be 
used to predict all tasks, only that all tasks should be trained on one net so they 
may benefit each other. Do not treat tasks as one task just because they are being 
trained on one net! Balancing tasks (e.g., using different learning rates for different 
outputs) sometimes helps tasks learn at similar rates, thus maximizing the potential 
benefits of MTB. Also, because the training curves for MTB are often more com­
plex due to interactions between tasks (MTB curves are frequently multimodal), it 
is important to train MTB nets until all tasks appear to be overtraining. Restrict­
ing the capacity of MTB nets to force sharing or prevent overtraining usually hurts 
performance instead of helping it. MTB does not depend on restricted net capacity. 

We created the extra tasks in ID-ALVINN and ID-DOORS specifically because 
we thought they would improve performance on the important tasks. Multitask 
backprop can be used in other ways. Often the world gives us related tasks to 
learn. For example, the Calendar Apprentice System (CAP)[4] learns to predict 
the Location, Time_Of _Day, Day_Of _Week, and Duration of the meetings it 
schedules. These tasks are functions of the same data, share many common features, 
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and would be easy to learn together. Sometimes the world gives us related tasks 
in mysterious ways. For example, in a medical domain we are examining where 
the goal is to predict illness severity, half of the lab tests are cheap and routinely 
measured before admitting a patient (e.g., blood pressure, pulse, age). The rest are 
expensive tests requiring hospitalization. Users tell us it would be useful to predict 
if the severity of the illness warrants admission (and further testing) using just the 
pre-admission tests. Rather than ignore the most diagnostically useful information 
in the database, we use the expensive tests as additional tasks the net must learn. 
They are not very predictable from the simple pre-admission tests, but providing 
them to the net as outputs helps it learn illness severity better. Multitask backprop 
is one way of providing to a net information that at run time would only be available 
in the future. The training signals are needed only for the training set because they 
are outputs-not inputs-to the net. 

5 RELATED WORK 

Training nets with many outputs is not new; NETtalk [9] used one net to learn 
phonemes and stress. This approach was natural for NETtalk where the goal was 
to control a synthesizer that needed both phoneme and stress commands at the 
same time. No analysis, however, was made of the advantages of using one net for 
all the tasks3 , and the different outputs were not treated as independent tasks. For 
example, the NETtalk stress task overtrains badly long before the phoneme task is 
learned well, but NETtaik did not use different snapshots of the net for different 
tasks. NETtalk also made no attempt to balance tasks so that they would learn at 
a similar rate, or to add new tasks that might improve learning but which would 
not be useful for controlling the synthesizer. 

Work has been done on serial transfer between nets [8]. Improved learning speed was 
reported, but not improved generalization. The key difficulties with serial transfer 
are that it is difficult to scale to many tasks, it is hard to prevent catastrophic in­
terference from erasing what was learned previously, the learning sequence must be 
defined manually, and serial learning precludes mutual benefit between tasks. This 
work is most similar to catalytic hints [1][10] where extra tasks correspond to im­
portant learnable features of a main task. This work extends hints by showing that 
tasks can be related in more diverse ways, by expanding the class of mechanisms 
responsible for multitask backprop, by showing that capacity restriction is not an 
important mechanism for multitask backprop [2], and by demonstrating that cre­
ating many new related tasks may be an efficient way of providing domain-specific 
inductive bias to backprop nets. 

6 FUTURE WORK 

We used vanilla backprop to show the benefit of training many related tasks on 
one net. Additional techniques may enhance the effects. Regularization and incre­
mental net growing procedures might improve performance by promoting sharing 
without restricting capacity. New techniques may also be necessary to enhance the 
benefit of multitask backprop. Automatic balancing of task learning rates would 
make MTB easier to use. It would also be valuable to know when the different 
MTB mechanisms are working-they might be useful in different kinds of domains 
and might benefit from different regularization or balancing techniques. Finally, 
although MTB usually seems to help and rarely hurts, the only way to know it 

3See [5] for evidence that NETtalk is harder to learn using separate nets. 
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helps is to try it. It would be better to have a predictive theory of how tasks should 
relate to benefit MTB, particularly if new tasks are to be created only to provide a 
multitask benefit for the other important tasks in the domain. 

7 SUMMARY 

Five mechanisms that improve generalization performance on nets trained on mul­
tiple related tasks at the same time have been identified. These mechanisms work 
without restricting net capacity or otherwise reducing the net's VC-dimension. In­
stead, they exploit backprop's ability to combine the error terms for related tasks 
into an aggregate gradient that points towards better underlying represen tations. 
Multitask backprop was tested on a simulated domain, ID-ALVINN, and on a real 
domain, ID-DOORS. It improved generalization performance on hard tasks in these 
domains 20-40% compared with the best performance that could be obtained from 
multiple trials of single task backprop. 
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