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Abstract

‘We present a unifying view of discrete-time operator models used in the
context of finite word length linear signal processing. Comparisons are
made between therecently presented gamma operator model, and the delta
and rho operator models for performing nonlinear system identification
and prediction using neural networks. A new model based on an adaptive
bilinear transformation which generalizes all of the above models is
presented.

1 INTRODUCTION

The shift operator, defined as gz (% 2 z(t + 1), is frequently used to provide time-domain
signals to neural network models. Using the shift operator, a discrete-time model for system
identification or time series prediction problems may be constructed. A common method of
developing nonlinear system identification models is to use a neural network architecture as
an estimator F (Y (t), X (t); 0) of F(Y(t), X(t)), where @ represents the parameter vector
of the network. Shift operators at the input of the network provide the regression vectors
Y(t-1) = [y(t—-1),...,y(t—N)]',and X (t) = [2(?), ..., z(t—M)]’ in a manner analogous
to linear filters, where [-]' represents the vector transpose.

It is known that linear models based on the shift operator ¢ suffer problems when used to
model lightly-damped-low-frequency (LDLF) systems, with poles near (1, 0) on the unit
circle in the complex plane [5]. As the sampling rate increases, coefficient sensitivity and
round-off noise become a problem as the difference between successive sampled inputs
becomes smaller and smaller.
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A method of overcoming this problem is to use an alternative discrete-time operator.
Agarwal and Burrus first proposed the use of the delta operator in digital filters to replace
the shift operator in an attempt to overcome the problems described above [1]. The delta
operator is defined as
qg—1
b = — 1

where A is the discrete-time sampling interval. Williamson showed that the delta operator
allows better performance in terms of coefficient sensitivity for digital filters derived from
the direct form structure [19], and a number of authors have considered using it in linear
filtering, estimation and control [5, 7, 8]

More recently, de Vries, Principe at. al. proposed the gamma operator [2, 3] as a means

of studying neural network models for processing time-varying patterns. This operator is
defined by

—(l—c¢c
_ ¢—(-9 2
c
It may be observed that it is a generalization of the delta operator with adjustable parameters
¢. An extension to the basic gamma operator introducing complex poles using a second
order operator, was given in [18].

This raises the question, is the gamma operator capable of providing better neural network
modelling capabilities for LDLF systems ? Further, are there any other operators which
may be better than these for nonlinear modelling and prediction using neural networks ?

In the context of robust adaptive control, Palaniswami has introduced the rho operator
which has shown useful improvements over the performance of the delta operator [9, 10].
The rho operator is defined as

R (1 — C1A)

= - (3
where c1, c; are adjustable parameters. The rho operator generalizes the delta and gamma
operators. For the case where ¢; A = ¢;A = 1, the rho operator reduces to the usual shift
operator . When ¢; = 0, and c; = 1, the rho operator reduces to the delta operator [10].
For ¢c1A = ¢, A = ¢, the rho operator is equivalent to the gamma operator .

One advantage of the rho operator over the delta operator is that it is stably invertible,
allowing the derivation of simpler algorithms [9]. The p operator can be considered as
a stable low pass filter, and parameter estimation using the p operator is low frequency
biased. For adaptive control systems, this gives robustness advantages for systems with
unmodelled high frequency characteristics [9].

By defining the bilinear transformation (BLT) as an operator, it is possible to introduce
an operator which generalizes all of the above operators. We can therefore define the pi
operator as

2 (ag—c2)
A (c3q +cq)

with therestriction that ¢;c4 # c2¢3 (to ensure 7 is not a constant function [14]). The bilinear
mapping produced has a pole at ¢ = —c4/c3. By appropriate setting of the ¢;, ¢z, €3, ¢4
parameters each operator, the pi operator can be reduced to each of the previous operators.

m

(C))

In the work reported here, we consider these alternative discrete-time operators in feed-
forward neural network models for system identification tasks. We compare the popular
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gamma model [4] with other models based on the shift, delta, rho and pi operators. A
framework of models and Gauss-Newton training algorithms is provided, and the models
are compared by simulation experiments.

2 OPERATOR MODELS FOR NONLINEAR SIGNAL
PROCESSING

A model which generalizes the usual discrete-time linear moving average model, ie, a single
layer network is given by

9t) = G(v,0)=(t) (5)
M
G(v,0) = > b
i=0

q~* shift operator
_ 6% delta operator
vt o= 7~' gamma operator (6)
p~' rho operator
=% pi operator

This general class of moving average model can be termed MA(r). We define ug(t) 2 z(t),
and u;(t) 2 yly;_, (t) and hence obtain

z(t —1) shift operator
Aui_y(t — 1)+ u;(t — 1) delta operator

ui(t) = cui—1(t — 1)+ (1 = c)ui(t — 1) gamma operator  (7)
e Au;_1(t — 1)+ (1 — 1 A)ui(t — 1) rho operator

2%:1 (C3'U£—1(t) + C4u|'_1(t —_ 1)) — %ui(t — l) pl operator

A nonlinear model may be defined using a multilayer perceptron (MLP) with the v-operator
elements at the input stage. The input vector Z2(t) to the network is

20t = [i(), v 'zi(t), ..., v Mz (t)] 8)

where z;(t) is the ith input to the system. This model is termed the v-operator multilayer
perceptron or MLP(v) model.

An MLP(v) model having L layers with Ny, Ny, ..., Nr nodes per layer, is defined in the
same manner as a usual MLP, with

z(t) = f(2:(2)) (€)
N
i) = > wha ') (10)

where each neuron i in layer / has an output of z/(¢); a layer consists of N; neurons (! = 0
denotes the input layer, and [ = L denotes the output layer, 7‘}\': = 1.0 may be used for a
bias); f(-) is a sigmoid function typically evaluated as tanh(-), and a synaptic connection
between unit i in the previous layer and unit k in the current layer is represented by w},;.
The notation ¢ may be used to represent a discrete time or pattern instance. While the case
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we consider employs the v-operator at the input layer only, it would be feasible to use the
operators throughout the network as required.

On-line algorithms to update the operator parameters in the MA(~) model can be found
readily. In the case of the MLP(~) model, we approach the problem by backpropagating
the error information to the input layer and using this to update the operator coefficients.
de Vries and Principe et. al., proposed stochastic gradient descent type algorithms for
adjusting the c operator coefficient using a least-squares error criterion [2, 12]. For brevity
we omit the updating procedures for the MLP network weights; a variety of methods may
be applied (see for example [13, 15]).

We define an instantaneous output error criterion J (t) = e>(t), where e(t) = y(t) — 3(2).

Defining 0 as the estimated operator parameter vector at time ¢ of the parameter vector 6,
"~ we have

2 é gamma operator
0 = { [é1, &) rho operator (11)
[¢1, é2,é3,84)  pi operator

A first order algorithm to update the coefficients is

bit+1) = 6;(t)+ Abi(t) (12)
Abi(t) = —nVa,J(6;1)
(13)
where the adjustment in weights is found as
i L 0J(@)
Abi(t) = 50,
M .
= 0y ¥'(t)6(t) (14)
i=1

where §; (t) is the backpropagated error at the jth node of input layer, and w-z '(t) is the first
order sensitivity vector of the model operator parameters, defined by

agi; gamma operator
!
j a i! ! a i
Yit) = ;c,-: .—(—lé‘cj,‘ ] rho operator (15)
Bui(t) Bui(t) dui(t) duwi®)]’ .
[ é'cf.)’ gc,(-,ls é‘cﬁ,), ;—:54) pi operator

Substituting u;(¢) in from (7), the recursive equations for ¢7 (t) (noting that ¢/ (¢)= (2
Vj) are

Yi(t) = uii(t — 1) — ui(t — 1)+ éihi—1(t — 1) + (1 — é)9i(t — 1) gamma operator

oA 11— 1)+ (1 —1A)i1(t—1) — Aui(t — 1
Yi(t) = cAzufl(tl'ﬂl) +)€‘2&(¢£_1f:(t -)-‘pl)l(-}- a —)-élA)u%bE,z(f _) 1) ] rho operator

7= (Estpi11(t) + Gathimq 1 (t = 1)) + 29pia(t — 1) "
— B (E3uio1(t) + quizq(t — 1)) — %%u‘-(t -1),
Yi(t) = %= (Esi12(t) + eathimr ot — 1)) + ¢pia(t — 1) + F-us(t — 1), | pi operator
2AT, (wiz1(2) + E3%i—1,3(t) + Eathi—13(t — 1)) + %’,"J’i.:i(t —-1),

72 (Esthiora(t) + wica(t — 1) + Eathiora(t — 1)) + S¢iat — 1) |
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for the gamma, rho, and pi operators respectively, and where t; ; (¢) refers to the jth element
of the ith + vector, with ¥; o(t) = 0.

A more powerful updating procedure can be obtained by using the Gauss-Newton method
[6]. In this case, we replace (14) with (omitting ¢ subscripts for clarity),

0t+1) = 0(t)+y(t)R™ (t)p(t)A~'6(t) (16)

where +(t) is the gain sequence (see [6] for details), A~! is a weighting matrix which may
be replaced by the identity matrix [16], or estimated as [6)

Aw) = Ae-1)+70) (82) - Ae-1) a7
R(t) is an approximate Hessian matrix, defined by
Rt+1) = AORE)+{(&)p@)Y'(2) (18)

where A\(t) = 1 — ((t). Efficient computation of R~' may be performed using the
matrix inversion lemma [17], factorization methods such as Cholesky decomposition or
other fast algorithms. Using the well known matrix inversion lemma [6], we substitute

P(t) = R7(t), where
R I P(&)y(t)y'(1)P(1)
0 = 5570~ 56 o+ cammroim) -
The initial values of the coefficients are important in determining convergence. Principe

et. al. [12] note that setting the coefficients for the gamma operator to unity provided the
best approach for certain problems.

3 SIMULATION EXAMPLES

We are primarily interested in the differences between the operators themselves for mod-
elling and prediction, and not the associated difficulties of training multilayer perceptrons
(recall that our models will only differ at the input layer). For the purposes of a more direct
comparison, in this paper we test the models using a single layer network. Hence these
linear system examples are used to provide an indication of the operators’ performance.

3.1 EXPERIMENT 1

The first problem considered is a system identification task arising in the context of high
bit rate echo cancellation [5]. In this case, the system is described by

0.0254 — 0.02962" + 0.0042522
1—1.957z-1 +0.957z~2

This system has poles on the real axis at 0.9994, and 0.9577, thus it is an LDLF system.
The input signal to the system in each case consisted of uniform white noise with unit
variance. A Gauss-Newton algorithm was used to determine all unknown weights. We
conducted Monte-Carlo tests using 20 runs of differently seeded training samples each of
2000 points to obtain the results reported. We assessed the performance of the models by
using the Signal-to-Noise Ratio (SNR) defined as 10log(E[d(t)?]/ E[e(t)?]), where E[; is
the expectation operator, and d(?) is the desired signal. For each run, we used the last 500
samples to compute a SNR figure.

H(Z) —

(20)
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Figure 1: Comparison of typical model output results for Experiment 1 with models based
on the following operators: (a) shift, (b) delta (c) gamma, (d) rho, and (e) pi.

Table 1: System Identification Experiment 1 Results

Model Operator | Avg SNR (dB) [ Best SNR (dB)
- shaft +2.7 +3.6
delta -7.1 +7.7
gamma +5.7 +14.1
rho +9.7 +16.5
i +10.0 +16.5

For the purposes of this experiment, we conducted several trials and selected 6(0) values
which provided stable convergence. The values chosen for this experiment were: 6(0)
= {0.75,[0.5,0.75], [0.75,0.7,0.35, —0.25] } for the gamma, rho and pi operator models
respectively. In each case we used model order M = 8.

Results for this experiment are shown in Table 1 and Figure 1. We observe that the pi
operator gives the best performance overall. Some difficulties with instability occurring
were encountered, thereby requiring a stability correction mechanism to be used on the
operator updates. The next best performance was observed in the rho and then gamma
models, with fewer instability problems occurring.

3.2 EXPERIMENT 2

The second experiment used a model described by

1-0.8731z1 - 0.8731272 4 273
H(z) = 158653:-13 2.7505:—2 — 0.8843:3 (21)

This system is a 3rd order lowpass filter tested in [11]. The same experimental procedures
as used in Experiment 1 were followed in this case.

For the second experiment (see Table 2), it was found that the pi operator gave the best results
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Table 2: System Identification Experiment 2 Results

Model Operator | Avg SNR (dB) [ Best SNR (dB)
shift 10.7 123
delta -21.5 10.2
gamma 13.5 15.0
rho 133 17.4
pi 14.0 17.9

recorded over all the tests. On average however, the improvement for this identification
problem is less. It is observed that that the pi model is only slightly better than the gamma
and rho models. Interestingly, the gamma and rho models had no problems with stability,
while the pi model still suffered from convergence problems due to instability. As before,
the delta model gave a wide variation in results and performed poorly.

From these and other experiments performed it appears that performance advantages can
be obtained through the use of the more complex operators. As observed from the best
recorded runs, the extra degrees of freedom in the rho and pi operators appear to provide
the means to give better performance than the gamma model. The improvements of the
more complex operators come at the expense of potential convergence problems due to
instabilities occurring in the operators and a potentially multimodal mean square output
error surface in the operator parameter space.

Clearly, there is a need for further investigation into the performance of these models on a
wider range of tasks. We present these preliminary examples as an indication of how these
alternative operators perform on some system identification problems.

4 CONCLUSIONS

Models based on the delta operator, rho operator, and pi operator have been presented
and new algorithms derived. Comparisons have been made to the previously presented
gamma model introduced by de Vries, Principe et. al. [4] for nonlinear signal processing
applications.

While the simulation examples considered show are only linear, it is important to realize
that the derivations are applicable for multilayer perceptrons, and that the input stage of
these networks is identical to what we have considered here. We treat only the linear case
in the examples in order not to complicate our understanding of the results, knowing that
what happens in the input layer is important to higher layers in network structures.

The results obtained indicate that the more complex operators provide a potentially more
powerful modelling structure, though there is a need for further work into mechanisms of
maintaining stability while retaining good convergence properties.

The rho model was able to perform better than the gamma model on the problems tested,
and gave similar results in terms of susceptibility to convergence and instability problems.
The pi model appears capable of giving the best performance overall, but requires more
attention to ensure the stability of the coefficients.

For future work it would be of value to analyse the convergence of the algorithms, in
order to design methods which ensure stability can be maintained, while not disrupting the
convergence of the model.
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