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The paper presents a rapid speaker-normalization technique based 
on neural network spectral mapping. The neural network is used 
as a front-end of a continuous speech recognition system (speaker­
dependent, HMM-based) to normalize the input acoustic data from 
a new speaker. The spectral difference between speakers can be 
reduced using a limited amount of new acoustic data (40 phonet­
ically rich sentences). Recognition error of phone units from the 
acoustic-phonetic continuous speech corpus APASCI is decreased 
with an adaptability ratio of 25%. We used local basis networks of 
elliptical Gaussian kernels, with recursive allocation of units and 
on-line optimization of parameters (GRAN model). For this ap­
plication, the model included a linear term. The results compare 
favorably with multivariate linear mapping based on constrained 
orthonormal transformations. 

1 INTRODUCTION 

Speaker normalization methods are designed to minimize inter-speaker variations, 
one of the principal error sources in automatic speech recognition. Training a speech 
recognition system on a particular speaker (speaker-dependent or SD mode) gen­
erally gives better performance than using a speaker-independent system, which is 
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trained to recognize speech from a generic user by averaging over individual dif­
ferences. On the other hand, performance may be dramatically worse when a SD 
system "tailored" on the acoustic characteristics of a speaker (the reference speaker) 
is used by another one (the new or target speaker). Training a SD system for any 
new speaker may be unfeasible: collecting a large amount of new training data 
is time consuming for the speaker and unacceptable in some applications. Given 
a pre-trained SD speech recognition system, the goal of normalization methods is 
then to reduce to a few sentences the amount of training data required from a new 
speaker to achieve acceptable recognition performance. The inter-speaker variation 
of the acoustic data is reduced by estimating a feature vector transformation be­
tween the acoustic parameter space of the new speaker and that of the reference 
speaker (Montacie et al., 1989; Class et al., 1990; Nakamura and Shikano, 1990; 
Huang, 1992; Matsukoto and Inoue, 1992). This multivariate transformation, also 
called spectral mapping given the type of features considered in the parameteri­
zation of speech data, provides an acoustic front-end to the recognition system. 
Supervised speaker normalization methods require that the text of the training ut­
terances required from the new speaker is known, while arbitrary utterances can 
be used by unsupervised methods (Furui and Sondhi, 1991). Good performance 
have been achieved with spectral mapping techniques based on MSE optimization 
(Class et al., 1990; Matsukoto and Inoue, 1992). Alternative approaches presented 
estimation of the spectral normalization mapping with Multi-Layer Perceptron neu­
ral networks (Montacie et al., 1989; Nakamura and Shikano, 1990; Huang, 1992; 
Watrous, 1994). 

This paper introduces a supervised speaker normalization method based on neural 
network regression with a generalized local basis model of elliptical kernels (General­
ized Resource Allocating Network: GRAN model). Kernels are recursively allocated 
by introducing the heuristic procedure of (Platt, 1991) within the generalized RBF 
schema proposed in (Poggio and Girosi, 1989). The model includes a linear term 
and efficient on-line optimization of parameters is achieved by an automatic dif­
ferentiation technique. Our results compare favorably with normalization by affine 
linear transformations based on orthonormal constrained pseudoinverse. In this pa­
per, the normalization module was integrated and tested as an acoustic front-end for 
speaker-dependent continuous speech recognition systems. Experiments regarded 
phone units recognition with Hidden Markov Model (HMM) recognition systems. 

The diagram in Figure 1 outlines the general structure of the experiment with 
GRAN normalization modules. The architecture is independent from the specific 
speech recognition system and allows comparisons between different normalization 
techniques. The GRAN model and a general procedure for data standardization are 
described in Section 2 and 3. After a discussion of the spectral mapping problem 
in Section 4, the APASCI corpus used in the experiments and the characteristics 
of the acoustic data are described in Section 5. The recognition system and the 
experiment set-up are detailed in Sections 6-8. Results are presented and discussed 
in Section 9. 
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Figure 1: System overview 

2 THE GRAN MODEL 

Output 

Feedforward artificial neural networks can be regarded as a convenient realization 
of general functional superpositions in terms of simpler kernel functions (Barron 
and Barron, 1988). With one hidden layer we can implement a multivariate su-
perposition f(z) = Ef=o cxjKj(z,wj) where Kj is a function depending on an 
input vector z and a parameter vector Wj, a general structure which allows to re­
alize flexible models for multivariate regression. We are interested in the schema: 
y = H K(x) + Ax + b with input vector x E Rd1 and estimated output vec­
tor y E R 2 . K = (Kj) is a n-dimensional vector of local kernels, H is the 
d2 x n real matrix of kernel coefficients, b E R d 2 is an offset term and A is a 
d2 x d1 linear term. Implemented kernels are Gaussian, Hardy multiquadrics, in­
verse of Hardy multiquadrics and Epanenchnikov kernels, also in the N adaraya­
Watson normalized form (HardIe, 1990). The kernel allocation is based on a 
recursive procedure: if appropriate novelty conditions are satisfied for the exam­
ple (x', y/), a new kernel Kn+1 is allocated and the new estimate Yn+l becomes 
Yn+l (x) = Yn(X) + Kn+1 (llx - x'llw)(y' - Yn(X)) (HardIe, 1990). Global proper­
ties and rates of convergence for recursive kernel regression estimates are given in 
(Krzyzak, 1992). The heuristic mechanism suggested by (Platt, 1991) has been 
extended to include the optimization of the weighted metrics as requested in the 
generalized versions of RBF networks of (Poggio and Girosi, 1989). Optimization 
regards kernel coefficients, locations and bandwidths, the offset term, the coeffi­
cient matrix A if considered, and the W matrix defining the weighted metrics in 
the input space: IIxll~ = xtwtWx. Automatic differentiation is used for efficient 
on-line gradient-descent procedure w.r. t. different error functions (L2, L1, entropy 
fit), with different learning rates for each type of parameters. 
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Figure 2: Commutative diagram for the speaker normalization problem. The spec­
tral mapping <p between original spaces X and Y is estimated by Ij; = TJy 1 . ip . TJx, 
obtained by composition of the neural GRAN mapping ip between PCA spaces X 
and Y with the two invertible PCA transformations TJx and TJy. 

3 NETWORKS AND PCA TRANSFORMATIONS 

The normalization module is designed to estimate a spectral mapping between the 
acoustic spaces of two different speakers. Inter-speaker variability is reflected by 
significant differences in data distribution in these multidimensional spaces (we con­
sidered 8 dimensions); in particular it is important to take into account global data 
anisotropy. More generally, it is also crucial to decorrelate the features describing 
the data. A general recipe is to apply the well-known Principal Component Analy­
sis (PCA) to the data, in this case implemented from standard numerical routines 
based on Singular Value Decomposition of the data covariance matrices. The net­
work was applied to perform a mapping between the new feature spaces obtained 
from the PCA transformations, mean translation included (Figure 2). 

4 THE SPECTRAL MAPPING PROBLEM 

A sound uttered by a speaker is generally described by a sequence offeature vectors 
obtained from the speech signal via short-time spectral analysis (Sec. 5). The spec­
tral representations of the same sequence of sounds uttered by two speakers are sub­
ject to significant variations (e.g. differences between male and female speakers, re­
gional accents, ... ). To deal with acoustic differences, a suitable transformation (the 
spectral mapping) is seeked which performs the "best" mapping between the corre­
sponding spectra oftwo speakers. Let Y = (Yl, Y2, ... , YJ) and X = (x 1, X2, ... , X I) be 
the spectral feature vector sequences of the same sentence uttered by two speakers, 
called respectively the reference and the new speaker. The desired mapping is per­
formed by a function <pC Xi) such that the transformed vector sequence obtained from 
X = (Xi) approximates as close as possible the spectral vector sequence Y = (Yi). 
To eliminate time differences between the two acoustic realizations, a time warping 
function has to be determined yielding pairs C(k) = (i(k),j(k))k=1.. .K of corre­
sponding indexes of feature vectors in X and Y, respectively. The desired spectral 
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mapping r,o(Xi) is the one which minimizes Ef=l d(Yj(k)' r,o(Xi(k»)) where d(·,·) is a 
distorsion measure in the acoustic feature space. To estImate the transformation, a 
set of supervised pairs (Xi(k), Yj(k») is considered. In summary, the training material 
considered in the experiments consisted of a set of vector pairs obtained by applying 
the Dynamic Time Warping (DTW) algorithm (Sakoe and Chiba, 1978) to a set 
of phrases uttered by the reference and the new speaker. 

5 THE APASCI CORPUS 

The experiments reported in this paper were performed on a portion of APASCI, 
an italian acoustic-phonetic continuous speech corpus. For each utterance, text 
and phonetic transcriptions were automatically generated (Angelini et al., 1994). 
The corpus consists of two portions. The first part, for the training and valida­
tion of speaker independent recognition systems, consists of a training set (2140 
utterances), a development set (900 utterances) and a test set (860 utterances). 
The sets contain, respectively, speech material from 100 speakers (50 males and 50 
females), 36 speakers (18 males and 18 females) and 40 speakers (20 males and 20 
females). The second portion of the corpus is for training and validation of speaker 
dependent recognition systems. It consists of speech material from 6 speakers (3 
males and 3 females). Each speaker uttered 520 phrases, 400 for training and 120 
for test. Speech material in the test set was acquired in different days with respect 
to the training set. A subset of 40 utterances from the training material forms the 
adaptation training set, to be used for speaker adaptation/normalization purposes. 

For this application, each signal in the corpus was processed to obtain its parametric 
representation. The signal was preemphasized using a filter with transfer function 
H(z) = 1 - 0.95 X z-l, and a 20 ms Hamming window is then applied every 10 
ms. For each frame, the normalized log-energy as well as 8 Mel Scaled Cepstral 
Coefficients (MSCC) based on a 24-channel filter-bank were computed. Normaliza­
tion of log-energy was performed by subtracting the maximum log-energy value in 
the sentence; for each Mel coefficient, normalization was performed by subtracting 
the mean value of the whole utterance. For both MSCC and the log-energy, the 
first order derivatives as well as the second order derivatives were computed. For 
each frame, all the computed acoustic parameters were combined in a single feature 
vector with 27 components. 

6 THE RECOGNITION SYSTEM 

For each of the 6 speakers, a SD HMM recognition system was trained with the 400 
utterances available in the APASCI corpus; the systems were bootstrapped with 
gender dependent models trained on the gender dependent speech material (1000 
utterances for male and 1140 utterances for female). A set of 38 context independent 
acoustic-phonetic units was considered. Left-to-right HMMs with three and four 
states were adopted for short (i.e. p,t,k,b,d,g) and long (e.g. a,i,u,Q,e) sounds 
respectively. Silence, pause and breath were modeled with a single state ergodic 
model. The output distribution probabilities were modeled with mixtures of 16 
gaussian probability densities, diagonal covariance matrixes. Transitions leaving 
the same state shared the same output distribution probabilities. 
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Table 1: Phone Recognition Rate (Unit Accuracy %) without normalization 

7 TRAINING THE NORMALIZATION MODULES 

A set of 40 phrases was considered for each pair (new, re f erence) of speakers to train 
the normalization modules. In order to take into account alternative pronunciation, 
insertion or deletion of phonemes, pauses between words and other phenomena, the 
automatic phonetic transcription and segmentation available in APASCI was used 
for each utterance. Given two utterances corresponding to the same phrase, we con­
sidered only their segments having the same phonetic transcription. To determine 
these segments the DTW algorithm was applied to the phonetic transcription of the 
two utterances. The DTW algorithm was applied a second time to the obtained 
segments and the resulting optimal alignment paths gave the desired set of vector 
pairs. The DTW algorithm was applied only to the 8 MSCC and the other acoustic 
parameters were left unmodified. 

We trained networks with 8 inputs and 8 outputs. The model included a linear 
term: first the linear term was fit to the data, and then the rest of the expansion 
was estimated by fitting the residuals of the linear regression. The networks grew 
up to 50 elliptical gaussian kernels using dynamic allocation. Kernel coefficients, 
locations and bandwidths were optimized using different learning rates for 10 epochs 
w.r.t the Ll norm, which proved to be more efficient than the usual L2 norm. 

8 THE RECOGNITION EXPERIMENTS 

Experiments concerned continuous phone recognition without any lexical and 
phonetical constraint (no phone statistic was used). For all the couples 
(new, reference) of speakers in the database, a recognition experiment was per­
formed using 90 (of the 120 available) test utterances from the new speaker with 
the SD recognition system previously trained for the reference speaker. On aver­
age the test sets consisted of 4770 phone units. The experiments were repeated 
transforming the test data with different normalization modules and performance 
compared. Results are expressed in terms of insertions (Ins), deletions (Del) and 
substitutions (Sub) of phone units made by the recognizer. Unit Accuracy (U A) 
and Percent Correct (PC) performance indicators are respectively defined w.r.t. 
the total number of units nunih as U A = 100 (1 - (Ins + Del + Sub)/nunit.) and 
PC = 100 (1 - (Del + Sub)/nunit.). In Table 1 the baseline speaker dependent 
performance for the 6 speaker dependent systems is reported. Row labels indi­
cate the speaker reference model while column labels identify whose target acous-
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Table 2: Phone Recognition Rate (Unit Accuracy %) with NN normalization 

tic data are used. Thus U A and PC entries in the main diagonal are for the 
same speaker who trained the system while the remaining entries relate to perfor­
mance obtained with new speakers. We also considered the adaptability ratios for 
a = U A and P = PC (Montacie et al., 1989): Pa = (aRT - aRT )/(aRR - aRT) and 
Pp = (PRT - PRT )/(PRR - PRT) where aRT indicate accuracy for reference speaker 
R and target T without normalization, aRR is the speaker dependent baseline accu­
racy and apex n indicates normalization. The same notation applies to the percent 
correct adaptability ratio pp. 

9 RESULTS AND CONCLUSIONS 

Normalization experiments have been performed with the set-up described in the 
previous Section. The phone recognition rates obtained with normalization modules 
based on the GRAN model are reported in Table 2 in terms of Unit Accuracy (dee 
Table 1 for the baseline performance). In Table 3 the performance of the GRAN 
model (NN) and constrained orthonormal linear mapping (LIN) are compared with 
the baseline performance (SD: no adaptation) in terms of both Unit Accuracy and 
Percent Correct. The network shows an improvement, as evidenced by the variation 
in the Pa and Pp values. Results are reported averaging performance over all the 
pairs (new,reference) of speakers (Total column), and considering pairs of speakers 
of the same gender and of different genders (Female: only female subjects, Male: 
only males, Dill: different genders). An analysis of the adaptability ratios shows 
that the effect of the network normalization is higher than with the linear network 
for all the 3 subgroups of pairs: p~N = 0.20 vs p~IN = 0.16 for the Female 
couples and liN = 0.16 vs p~IN = 0.15 for the Male couples. The improvement is 
higher (p~N = 0.28, p~IN = 0.24) for speaker of different genders. Although these 
preliminary experiments show only a minor improvement of performance achieved 
by the network with respect to linear mappings, we expect that the selectivity of 
the network could be exploited using acoustic contexts and code dependent neural 
networks. 
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Table 3: Phone Recognition Rate (%) in terms of both Unit Accuracy, Percent 
Correct, and adaptability ratio p. 
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