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Abstract 

We present a new method for obtaining local error bars for nonlinear 
regression, i.e., estimates of the confidence in predicted values that de­
pend on the input. We approach this problem by applying a maximum­
likelihood framework to an assumed distribution of errors. We demon­
strate our method first on computer-generated data with locally varying, 
normally distributed target noise. We then apply it to laser data from the 
Santa Fe Time Series Competition where the underlying system noise is 
known quantization error and the error bars give local estimates of model 
misspecification. In both cases, the method also provides a weighted­
regression effect that improves generalization performance. 

1 Learning Local Error Bars Using a Maximum Likelihood 
Framework: Motivation, Concept, and Mechanics 

Feed-forward artificial neural networks used for nonlinear regression can be interpreted as 
predicting the mean of the target distribution as a function of (conditioned on) the input 
pattern (e.g., Buntine & Weigend, 1991; Bishop, 1994), typically using one linear output unit 
per output variable. If parameterized, this conditional target distribution (CID) may also be 

·http://www.cs.colorado.edu/~andreas/Home.html. 
This paper is available with figures in colors as ftp://ftp.cs.colorado.edu/pub/ 
Time-Series/MyPapers/nix.weigenCLnips7.ps.Z . 
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viewed as an error model (Rumelhart et al., 1995). Here, we present a simple method that 
provides higher-order information about the cm than simply the mean. Such additional 
information could come from attempting to estimate the entire cm with connectionist 
methods (e.g., "Mixture Density Networks," Bishop, 1994; "fractional binning, "Srivastava 
& Weigend, 1994) or with non-connectionist methods such as a Monte Carlo on a hidden 
Markov model (Fraser & Dimitriadis, 1994). While non-parametric estimates of the shape 
of a C1D require large quantities of data, our less data-hungry method (Weigend & Nix, 
1994) assumes a specific parameterized form of the C1D (e.g., Gaussian) and gives us the 
value of the error bar (e.g., the width of the Gaussian) by finding those parameters which 
maximize the likelihood that the target data was generated by a particular network model. 
In this paper we derive the specific update rules for the Gaussian case. We would like to 
emphasize, however, that any parameterized unimodal distribution can be used for the em 
in the method presented here. 
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Figure 1: Architecture of the network for estimating error bars using an auxiliary output unit. All 
weight layers have full connectivity. This architecture allows the conditional variance ~2 -unit access 
to both information in the input pattern itself and in the hidden unit representation formed while 
learning the conditional mean, y(x). 

We model the desired observed target value d as d(x) = y(x) + n(x), where y(x) is the 
underlying function we wish to approximate and n(x) is noise drawn from the assumed 
cm. Just as the conditional mean of this cm, y(x), is a function of the input, the 
variance (j2 of the em, the noise level, may also vary as a function of the input x 
(noise heterogeneity). Therefore, not only do we want the network to learn a function 
y(x) that estimates the conditional mean y(x) of the cm, but we also want it to learn a 
function a-2 (x) that estimates the conditional variance (j2(x). We simply add an auxiliary 
output unit, the a-2-unit, to compute our estimate of (j2(x). Since (j2(x) must be positive, 
we choose an exponential activation function to naturally impose this bound: a-2 (x) = 
exp [Lk Wq2khk (x) + ,8], where,8 is the offset (or "bias"), and Wq2k is the weight between 
hidden unit k and the a-2-unit. The particular connectivity of our architecture (Figure 1), 
in which the a-2-unit has a hidden layer of its own that receives connections from both the 
y-unit's hidden layer and the input pattern itself, allows great flexibility in learning a-2 (x). 
In contrast, if the a-2-unit has no hidden layer of its own, the a-2-unit is constrained to 
approximate (j2 (x) using only the exponential of a linear combination of basis functions 
(hidden units) already tailored to represent y(x) (since learning the conditional variance 
a-2(x) before learning the conditional mean y(x) is troublesome at best). Such limited 
connectivity can be too constraining on the functional forms for a-2( x) and, in our experience, 

I The case of a single Gaussian to represent a unimodal distribution can also been generalized to a 
mixture of several Gaussians that allows the modeling of multimodal distributions (Bishop, 1994). 
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produce inferior results. This is a significant difference compared to Bishop's (1994) 
Gaussian mixture approach in which all output units are directly connected to one set of 
hidden units. The other extreme would be not to share any hidden units at all, i.e., to 
employ two completely separate sets of hidden units, one to the y(x)-unit, the other one to 
the a-2(x)-unit. This is the right thing to do if there is indeed no overlap in the mapping 
from the inputs to y and from the inputs to cr2• The two examples discussed in this paper are 
between these two extremes; this justifies the mixed architecture we use. Further discussion 
on shared vs. separate hidden units for the second example of the laser data is given by 
Kazlas & Weigend (1995, this volume). 

For one of our network outputs, the y-unit, the target is easily available-it is simply given 
by d. But what is the target for the a-2-unit? By maximizing the likelihood of our network ' 
model N given the data, P(Nlx, d), a target is "invented" as follows. Applying Bayes' rule 
and assuming statistical independence of the errors, we equivalently do gradient descent in 
the negative log likelihood of the targets d given the inputs and the network model, summed 
over all patterns i (see Rumelhart et at., 1995): C = - Li In P(dilxi, N). Traditionally, 
the resulting form of this cost function involves only the estimate Y(Xi) of the conditional 
mean; the variance of the CID is assumed to be constant for all Xi, and the constant terms 
drop out after differentiation. In contrast, we allow the conditional variance to depend on 
x and explicitly keep these terms in C, approximating the conditional variance for Xi by 
a-2(Xi). Given any network architecture and any parametric form for the ern (Le., any 
error model), the appropriate weight-update equations for gradient decent learning can be 
straightforwardly derived. 

Assuming normally distributed errors around y(x) corresponds to a em density function 

of P(dilxj) = [27rcr2(Xi)t 1/ 2 exp {- d~:Y~.) 2}. Using the network output Y(Xi) ~ 
y(Xi) to estimate the conditional mean and using the auxiliary output a-2(Xi) ~ cr2(xd 
to estimate the conditional variance, we obtain the monotonically related negative log 

lik lib d I P(d I Af\ - II 2 A2() [di-y(Xi)]2 S . all e 00, - n i Xi, n J - 2" n 7rcr Xi + 2".2(X.) . ummatlon over patterns 
gives the total cost: 

C = ! ,,{ [di =- y(xd] 
2 + Ina-2(Xi) + In27r} 

2 ~ cr2(Xi) , 
(1) 

To write explicit weight-update equations, we must specify the network unit transfer func­
tions. Here we choose a linear activation function for the y-unit, tanh functions for the 
hidden units, and an exponential function for the a-2 -unit. We can then take derivatives of 
the cost C with respect to the network weights. To update weights connected to the Y and 
a-2 -units we have: 

11 a-2~i) [di - Y(Xi)] hj(Xi) (2) 

11 2a-2~Xi) {[di - y(Xi)f - a-2 (Xi) } hk (Xi) (3) 

where 11 is the learning rate. For weights not connected to the output, the weight-update 
equations are derived using the chain rule in the same way as in standard backpropagation. 
Note that Eq. (3) is equivalent to training a separate function-approximation network for 
a-2(x) where the targets are the squared errors [di - y(Xi)]2]. Note also that if a-2(Xj) is 
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constant, Eqs. (1)-(2) reduce to their familiar forms for standard backpropagation with a 
sum-squared error cost function. 

The 1/&2(X) term in Eqs. (2)-(3) can be interpreted as a form of "weighted regression," 
increasing the effective learning rate in low-noise regions and reducing it in high-noise 
regions. As a result, the network emphasizes obtaining small errors on those patterns where 
it can (low &2); it discounts learning patterns for which the expected error is going to be large 
anyway (large &2). This weighted-regression term can itself be highly beneficial where 
outliers (i.e., samples from high-noise regions) would ordinarily pull network resources 
away from fitting low-noise regions which would otherwise be well approximated. 

For simplicity, we use simple gradient descent learning for training. Other nonlinear mini­
mization techniques could be applied, however, but only if the following problem is avoided. 
If the weighted-regression term described above is allowed a significant influence early in 
learning, local minima frequently result. This is because input patterns for which low errors 
are initially obtained are interpreted as "low noise" in Eqs. (2)-(3) and overemphasized 
in learning. Conversely, patterns for which large errors are initially obtained (because 
significant learning of y has not yet taken place) are erroneously discounted as being in 
"high-noise" regions and little subsequent learning takes place for these patterns, leading 
to highly-suboptimal solutions. This problem can be avoided if we separate training into 
the following three phases: 

Phase I (Initial estimate of the conditional mean): Randomly split the available data 
into equal halves, sets A and 8. Assuming u2(x) is constant, learn the estimate of the 
conditional mean y(x) using set A as the training set. This corresponds to "traditional" 
training using gradient descent on a simple squared-error cost function, i.e., Eqs. (1)-(2) 
without the 1/&2(X) terms. To reduce overfitting, training is considered complete at the 
minimum of the squared error on the cross-validation set 8, monitored at the end of each 
complete pass through the training data. 

Phase II (Initial estimate of the conditional variance): Attach a layer of hidden units 
connected to both the inputs and the hidden units of the network from Phase I (see Figure 1). 
Freeze the weights trained in Phase I, and train the &2-unit to predict the squared errors 
(see Eq. (3», again using simple gradient descent as in Phase I. The training set for this 
phase is set 8, with set A used for cross-validation. If set A were used as the training set 
in this phase as well, any overfitting in Phase I could result in seriously underestimating 
u2(x). To avoid this risk, we interchange the data sets. The initial value for the offset (3 
of the &2-unit is the natural logarithm of the mean squared error (from Phase I) of set 8. 
Phase II stops when the squared error on set A levels off or starts to increase. 

Phase ill (Weighted regression): Re-split the available data into two new halves, A' and 
8'. Unfreeze all weights and train all network parameters to minimize the full cost function 
C on set A'. Training is considered complete when C has reached its minimum on set 8'. 

2 Examples 

Example #1: To demonstrate this method, we construct a one-dimensional example prob­
lem where y(x) and u2(x) are known. We take the equation y(x) = sin(wax) sin(w,Bx) 
withwa = 3 andw,B = 5. We then generate (x, d) pairs by picking x uniformly from the in­
terval [0, 7r /2] and obtaining the corresponding target d by adding normally distributed noise 
n(x) = N[0,u2(x)] totheunderlyingy(x), whereu2(x) = 0.02+0.25 x [1-sin(w,Bx)j2. 
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Table 1: Results for Example #1. ENMS denotes the mean squared error divided by the overall 
variance of the target; "Mean cost" represents the cost function (Eq. (1)) averaged over all patterns . 
Row 4 lists these values for the ideal model (true y(x) and a2 (x)) given the data generated. Row 5 
gives the correlation coefficient between the network's predictions for the standard error (i.e., the 
square root of the &2 -unit's activation) and the actually occurring L1 residual errors, Id(Xi) - y(x;) I. 
Row 6 gives the correlation between the true a(x) and these residual errors . Rows 7-9 give the 
percentage of residuals smaller than one and two standard deviations for the obtained and ideal 
models as well as for an exact Gaussian. 

1 Training (N - 103) 1 Evaluation (N - 105 ) 1 - -
ENM ."< Mean cost Er.. IU .,,< Mean cost 

1 Phase I 0.576 0.853 0.593 0.882 
2 Phase " 0.576 0.542 0.593 0.566 
3 Phase III 0.552 0.440 0.570 0.462 
4 n( x ) (exact additive noise) 0.545 0.430 0.563 0.441 

I P I p J 
5 ~ ~~ ~ \: residual errors) 0.564 0.548 
6 a( x ,reridual errors) 0.602 0.584 

I sId 2 sId I sId 2 sId 
7 % of errors < .,.~ xl; 2"'~ xl 64.8 95.4 67.0 94.6 
8 % of errors < a-(x); 2a-(x) 66.6 96.0 68.4 95.4 
9 (aact Gaussian) 68.3 95.4 68.3 95.4 

We generate 1000 patterns for training and an additional 105 patterns for post-training 
evaluation. 

Training follows exactly the three phases described above with the following details:2 Phase 
I uses a network with one hidden layer of 10 tanh units and TJ = 10-2 • For Phase II we add 
an auxiliary layer of 10 tanh hidden units connected to the a.2-unit (see Figure 1) and use 
the same TJ. Finally, in Phase III the composite network is trained with TJ = 10- 4. 

At the end of Phase I (Figure 2a), the only available estimate of (1'2 (x ) is the global 
root-mean-squared error on the available data, and the model misspecification is roughly 
uniform over x-a typical solution were we training with only the traditional squared-error 
cost function. The corresponding error measures are listed in Table 1. At the end of Phase 
II, however, we have obtained an initial estimate of (1'2 (x ) (since the weights to the i)-unit 
are frozen during this phase, no modification of i) is made). Finally, at the end of Phase 
III, we have better estimates of both y{ x) and (1'2 (x). First we note that the correlations 
between the predicted errors and actual errors listed in Table 1 underscore the near-optimal 
prediction of local errors. We also see that these errors correspond, as expected, to the 
assumed Gaussian error model. Second, we note that not only has the value of the cost 
function dropped from Phase II to Phase III, but the generalization error has also dropped, 
indicating an improved estimate of y( x ). By comparing Phases I and III we see that the 
quality of i)(x) has improved significantly in the low-noise regions (roughly x < 0.6) at a 
minor sacrifice of accuracy in the high-noise region. 

Example #2: We now apply our method to a set of observed data, the 1000-point laser 

2Purther details: all inputs are scaled to zero mean and unit variance. All initial weights feeding 
into hidden units are drawn from a uniform distribution between -1 j i and 1 j i where i is the number of 
incoming connections. All initial weights feeding into y or &2 are drawn from a uniform distribution 
between -sji and sji where s is the standard deviation of the (overall) target distribution. No 
momentum is used, and all weight updates are averaged over the forward passes of 20 patterns. 
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Figure 2: (a) Example #1: Results after each phase of training. The top row gives the true y(x) 
(solid line) and network estimate y(x) (dotted line); the bottom row gives the true oo2(x) (solid line) 
and network estimate o-2(x) (dotted line). (b) Example #2: state-space embedding of laser data 
(evaluation set) using linear grey-scaling of 0.50 (lightest) < o-(Xt) < 6.92 (darkest). See text for 
details. 

intensity series from the Santa Fe competition.3 Since our method is based on the network's 
observed errors, the predicted error a-2(x) actually represents the sum of the underlying 
system noise, characterized by 002 (x) , and the model misspecification. Here, since we know 
the system noise is roughly uniform 8-bit sampling resolution quantization error, we can 
apply our method to evaluate the local quality of the manifold approximation.4 

The prediction task is easier if we have more points that lie on the manifold, thus better 
constraining its shape. In the competition, Sauer (1994) upsampled the 1000 available data 
points with an FFf method by a factor of 32. This does not change the effective sampling 
rate, but it "fills in" more points, more precisely defining the manifold. We use the same 
upsampling trick (without filtered embedding), and obtain 31200 full (x, d) patterns for 
learning. We apply the three-phase approach described above for the simple network of 
Figure 1 with 25 inputs (corresponding to 25 past values), 12 hidden units feeding the y-unit, 
and a libera130 hidden units feeding the a-2 -unit (since we are uncertain as to the complexity 
of (j2(x) for this dataset). We use 11 = 10-7 for Phase I and 11 = 10- 10 for Phases II and III. 
Since we know the quantization error is ±O. 5, error estimates less than this are meaningless. 
Therefore, we enforce a minimum value of (j2(x) = 0.25 (the quantization error squared) 
on the squared errors in Phases II and III. 

3The data set and several predictions and characterizations are described in the vol­
ume edited by Weigend & Gershenfeld (1994). The data is available by anonymous ftp 
at ftp.cs.colorado.edu in /pub/Time-Series/SantaFe as A.dat. See also 
http://www . cs. colorado. edu/Time-Series/TSWelcome. html for further analyses 
of this and other time series data sets. 

4When we make a single-step prediction where the manifold approximation is poor, we have little 
confidence making iterated predictions based on that predicted value. However, if we know we are in 
a low-error region, we can have increased confidence in iterated predictions that involve our current 
prediction. 



Learning Local Error Bars for Nonlinear Regression 495 

Table 2: Results for Example #2 (See Table 1 caption for definitions) . 

row I I Training (N - 975) I Evaluation (N - 23 950) - . 
EMMC: Mean <XlSt E1"Juc: Mean cost 

I Phase I 0.00125 1.941 0.0156 7.213 
2 Phase II 0.00125 1.939 0.0156 5.628 
3 Phase III 0.00132 1.725 0.0139 5.564 

p P 
4 P( a( x ) . residual errors) 0.557 0.366 

1 sid 2std 1 sid 2 std 
% of errors < a( x); 2a( x) 69A 94.9 63.1 88.0 

(exacl Gaussian) 68.3 95.4 68.3 95.4 

Results are given in Table 2 for patterns generated from the available 1000 points and 
24,000 additional points used for evaluation. Even though we have used a Gaussian error 
model, we know the distribution of errors is not Gaussian. This is reflected in rows 5 and 
6, where the training data is modeled as having a Gaussian em but the evaluation values 
become considerably distorted from an exact Gaussian. Again, however, not only do we 
obtain significant predictability of the errors, but the method also reduces the squared-error 
measure obtained in Phase I. We can use the estimated error to characterize the quality 
of the manifold approximation on 24,000 post-training evaluation points, as illustrated in 
Figure 2b. The manifold approximation is poorer (darker) for higher predicted values of 
Xt and for values nearer the edge of the manifold. Note the dark-grey (high-error) vertical 
streak leaving the origin and dark points to its left which represent patterns involving sudden 
changes in oscillation intensity. 

3 Discussion 

Since we are in effect approximating two functions simultaneously, we can apply many of 
the existing variations for improving function approximation designed for networks learning 
only y(x). For example, when using limited amounts of data, especially if it is noisy, the 
particular split of data into training and cross-validation sets we use introduces significant 
variation in the resulting y(x) due to overfitting, as demonstrated on financial data by 
Weigend & LeBaron (1994). If we want to estimate local error bars, not only must we 
fear overfitting y(x), but we must also be concerned with overfitting &.2 (x). If the standard 
method of stopping at the minimum of an appropriate cross-validation set does not suffice 
for a given problem, it is straightforward to employ the usual anti-overfitting weaponry 
(smooth &2 as a function of x, pruning, weight-elimination, etc.). Furthermore, we can 
bootstrap over our available dataset and create multiple composite networks, averaging their 
predictions for both y(x) and &2(X) . Additionally, to incorporate prior information in a 
Bayesian framework as a form of regularization, Wolpert (personal communication, 1994) 
suggests finding the maximum a posteriori (instead of maximum-likelihood) conditional 
mean and variance using the same interpretation of the network outputs. 

In summary, we start with the maximum-likelihood principle and arrive at error estimates 
that vary with location in the input space. These local error estimates incorporate both 
underlying system noise and model misspecification. We have provided a computer­
generated example to demonstrate the ease with which accurate error bars can be learned. 
We have also provided an example with real-world data in which the underlying system 
noise is small, uniform quantization error to demonstrate how the method can be used 
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to characterize the local quality of the regression model. A significant feature of this 
method is its weighted-regression effect, which complicates learning by introducing local 
minima but can be potentially beneficial in constructing a more robust model with improved 
generalization abilities. In the framework presented, for any problem we must assume a 
specific parameterized cm then add one auxiliary output unit for each higher moment 
of the cm we wish to estimate locally. Here we have demonstrated the Gaussian case 
with a location parameter (conditional mean) and a scale parameter (local error bar) for 
a scalar output variable. The extension to multiple output variables is clear and allows a 
full covariance matrix to be used for weighted regression, including the cross-correlation 
between multiple targets. 
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