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Abstract 

Diagnosis of human disease or machine fault is a missing data problem 
since many variables are initially unknown. Additional information needs 
to be obtained. The j oint probability distribution of the data can be used to 
solve this problem. We model this with mixture models whose parameters 
are estimated by the EM algorithm. This gives the benefit that missing 
data in the database itself can also be handled correctly. The request for 
new information to refine the diagnosis is performed using the maximum 
utility principle. Since the system is based on learning it is domain 
independent and less labor intensive than expert systems or probabilistic 
networks. An example using a heart disease database is presented. 

1 INTRODUCTION 

Diagnosis is the process of identifying diseases in patients or disorders in machines by 
considering history, symptoms and other signs through examination. Diagnosis is a common 
and important problem that has proven hard to automate and formalize. A procedural 
description is often hard to attain since experts do not know exactly how they solve a 
problem. 

In this paper we use the information about a specific problem that exists in a database 
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of cases. The disorders or diseases are determined by variables from observations and 
the goal is to find the probability distribution over the disorders, conditioned on what has 
been observed. The diagnosis is strong when one or a few of the possible outcomes are 
differentiated from the others. More information is needed if it is inconclusive. Initially 
there are only a few clues and the rest of the variables are unknown. Additional information 
is obtained by asking questions and doing tests. Since tests may be dangerous, time 
consuming and expensive, it is generally not possible or desirable to find the answer to 
every question. Unnecessary tests should be avoided . 

. There have been many attempts to automate diagnosis. Early work [Ledley & Lusted, 1959] 
realized that the problem is not always tractable due to the large number of influences that 
can exist between symptoms and diseases. Expert systems, e.g. the INTERNIST system 
for internal medicine [Miller et al., 1982], have rule-bases which are very hard and time 
consuming to build. Inconsistencies may arise when new rules are added to an existing 
database. There is also a strong domain dependence so knowledge bases can rarely be 
reused for new applications. 

Bayesian or probabilistic networks [Pearl, 1988] are a way to model a joint probability 
distribution by factoring using the chain rule in probability theory. Although the models 
are very powerful when built, there are presently no general learning methods for their 
construction. A considerable effort is needed. In the Pathfinder system for lymph node 
pathology [Heckerman et al., 1992] about 14,000 conditional probabilities had to be assessed 
by an expert pathologist. It is inevitable that errors will occur when such large numbers of 
manual assessments are involved. 

Approaches to diagnosis that are based on domain-independent machine learning alleviate 
some of the problems with knowledge engineering. For decision trees [Quinlan, 1986], a 
piece of information can only be used if the appropriate question comes up when traversing 
the tree. This means that irrelevant questions can not be avoided. Feedforward multilayer 
perceptrons for diagnosis [Baxt, 1990] can classify very well, but they need full information 
about a case. None of these these methods have adequate ways to handle missing data during 
learning or classification. 

The exponentially growing number of probabilities involved can make exact diagnosis 
intractable. Simple approximations such as independence between all variables and condi­
tional independence given the disease (naive Bayes) introduce errors since there usually are 
dependencies between the symptoms. Even though systems based on these assumptions 
work surprisingly well, correct diagnosis is not guaranteed. This paper will avoid these 
assumptions by using mixture models. 

2 MIXTURE MODELS 

Diagnosis can be formulated as a probability estimation problem with missing inputs. The 
probabilities of the disorders are conditioned on what has currently been observed. If we 
model the joint probability distribution it is easy to marginalize to get any conditional 
probability. This is necessary in order to be able to handle missing data in a principled 
way [Ahmad & Tresp, 1993]. Using mixture models [McLachlan & Basford, 1988], a 
simple closed form solution to optimal regression with missing data can be formulated. The 
EM algorithm, a method from parametric statistics for parameter estimation, is especially 
interesting in this context since it can also be formulated to handle missing data in the 
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training examples [Dempster et al., 1977; Ghahramani & Jordan, 1994]. 

2.1 THE EM ALGORITHM 

The data underlying the model is assumed to be a set of N D-dimensional vectors X = 
{ Z I, . . . , Z N }. Each data point is assumed to have been generated independently from a 
mixture density with M components 

M M 

p(z) = LP(z,Wj;Oj) = LP(Wj)p(zlwj;Oj), (1) 
j=l j=l 

where each mixture component is denoted by Wj. p(Wj), the a priori probability for 
mixturewj, and 8 = (01 , ... , OM) are the model parameters. 

To estimate the parameters for the different mixtures so that it is likely that the linear com­
bination of them generated the set of data points, we use maximum likelihood estimation. A 
good method is the iterative Expectation-Maximization, or EM, algorithm [Dempster et al., 
1977]. 

Two steps are repeated. First a likelihood is formulated and its expectation is computed in 
the E-step. For the type of models that we will use, this step will calculate the probability 
that a certain mixture component generated the data point in question. The second step 
is the M-step where the parameters that maximize the expectation are found. This can be 
found analytically for models that can be written in an exponential form, e.g. Gaussian 
functions. Equations can be derived for both batch and on-line learning. Update equations 
for Gaussian distributions with and without missing data will be given here, other distribu­
tions are possible, e.g. binomial or multinomial [Stensmo & Sejnowski, 1994]. Details and 
derivations can be found in [Dempster et al ., 1977; Nowlan, 1991; Ghahramani & Jordan, 
1994; Stensmo & Sejnowski, 1994]. 

From (1) we form the log likelihood of the data 
N N M 

L(8IX) = L logp(zi; OJ) = L log LP(Wj )P(Zi IWj; OJ). 
j=l 

There is unfortunately no analytic solution to the logarithm of the sum in the right hand side 
of the equation. However, if we were to know which of the mixtures generated which data 
point we could compute it. The EM algorithm solves this by introducing a set of binary 
indicator variables Z = {Zij}. Zij = 1 if and only if the data point Zi was generated by 
mixture component j. The log likelihood can then be manipulated to a form that does not 
contain the log of a sum. 

The expectation of %i using the current parameter values 8k is used since %i is not known 
directly. This is the E-step of the EM algorithm. The expected value is then maximized in 
theM-step. The two steps are iterated until convergence. The likelihood will never decrease 
after an iteration [Dempster et al., 1977]. Convergence is fast compared to gradient descent. 

One of the main motivations for the EM-algorithm was to be able to handle missing values 
for variables in a data set in a principled way. In the complete data case we introduced 
missing indicator variables that helped us solve the problem. With missing data we add 
the missing components to the Z already missing [Dempster et aI., 1977; Ghahramani & 
Jordan, 1994]. 
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2.2 GAUSSIAN MIXTURES 

We specialize here the EM algorithm to the case where the mixture components are radial 
Gaussian distributions. For mixture component j with mean I-'j and covariance matrix 1:j 
this is 

The form of the covariance matrix is often constrained to be diagonal or to have the 
same values on the diagonal, 1:j = o} I. This corresponds to axis-parallel oval-shaped 
and radially symmetric Gaussians, respectively. Radial and diagonal basis functions can 
function well in applications [Nowlan, 1991], since several Gaussians together can form 
complex shapes in the space. With fewer parameters over-fitting is minimized. In the radial 
case, with variance o} 

In the E-step the expected value of the likelihood is computed. For the Gaussian case this 
becomes the probability that Gaussian j generated the data point 

Pj(Z) = !(Wj)Gj(z) . 
l:k=l P(Wk)Gk(Z) 

The M-step finds the parameters that maximize the likelihood from the E-step. For complete 
data the new estimates are 

(2) 

N 

where Sj = I:Pj(Zi). 
i=l 

When input variables are missing the Gj(z) is only evaluated over the set of observed 
dimensions O. Missing (unobserved) dimensions are denoted by U. The update equation 
for p(Wj) is unchanged. To estimate itj we set zf = itY and use (2). The variance 
becomes 

A least squares regression was used to fill in missing data values during classification. For 
missing variables and Gaussian mixtures this becomes the same approach used by [Ahmad & 
Tresp, 1993]. The result of the regression when the outcome variables are missing is a 
probability distribution over the disorders. This can be reduced to a classification for 
comparison with other systems by picking the outcome with the maximum of the estimated 
probabilities. 
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3 REQUESTING MORE INFORMATION 

During the diagnosis process, the outcome probabilities are refined at each step based on 
newly acquired knowledge. It it important to select the questions that lead to the minimal 
number of necessary tests. There is generally a cost associated with each test and the goal 
is to minimize the total cost. Early work on automated diagnosis [Ledley & Lusted, 1959] 
acknowledged the problem of asking as few questions as possible and suggested the use of 
decision analysis for the solution. An important idea from the field of decision theory is the 
maximum expected utility principle [von Neuman & Morgenstern, 1947]: A decision maker 
should always choose the alternative that maximizes some expected utility of the decision . 
For diagnosis it is the cost of misclassification. Each pair of outcomes has a utility u(x, y) 
when the correct diagnosis is x but y has been incorrectly determined. The expectation can 
be computed when we know the probabilities of the outcomes. 

The utility values have to be assessed manually in what can be a lengthy and complicated 
process. For this reason a simplification of this function has been suggested by [Hecker­
man et al., 1992]: The utility u(x, y) is 1 when both x and y are benign or both are malign, 
and 0 otherwise. This simplification has been found to work well in practice. Another 
complication with maximum expected utility principle can also make it intractable. In the 
ideal case we would evaluate every possible sequence of future choices to see which is 
the best. Since the size of the search tree of possibilities grows exponentially this is often 
not possible. A simplification is to 100k ahead only one or a few steps at a time. This 
nearsighted or myopic approach has been tested in practice with good results [Gorry & 
Barnett, 1967; Heckerman et al ., 1992] . 

4 THE DIAGNOSIS SYSTEM 

The system we have developed has two phases. First there is a learning phase where a 
probabilistic model is built. This model is then used for inference in the diagnosis phase. 

In the learning phase, the joint probability distribution of the data is modeled using mixture 
models. Parameters are determined from a database of cases by the EM algorithm. The 
k-means algorithm is used for initialization. Input and output variables for each case are 
combined into one vector per case to form the set of training patterns. The outcomes and 
other nominal variables are coded as J of N . Continuous variables are interval coded. 

In the diagnosis phase, myopic one-step look-ahead was used and utilities were simplified 
as above. The following steps were performed: 

1. Initial observations were entered. 

2. Conditional expectation regression was used to fill in unknown variables. 

3. The maximum expected utility principle was used to recommend the next obser­
vation to make. Stop if nothing would be gained by further observations. 

4. The user was asked to determine the correct value for the recommended observa­
tion. Any other observations could be made, instead of or in addition to this. 

5. Continue with step 2. 
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Table 1: The Cleveland Heart Disease database. 

Observation Description Values 
1 age Age in years continuous 
2 sex Sex of subject male/female 
3 cp Chest pain four types 
4 trestbps Resting blood pressure continuous 
5 chol Serum cholesterol continuous 
6 fbs Fasting blood sugar It or gt 120 mg/dl 
7 restecg Resting electrocardiogr. five values 
8 thalach Max heart rate achieved continuous 
9 exang Exercise induced angina yes/no 
10 oldpeak ST depr. induced by continuous 

exercise relative to rest 
11 slope Slope of peak exercise up/flat/down 

STsegment 
12 ca # major vess. col. ftourosc. 0-3 
13 thaI Defect type normal/fixed/reversible 

Disorder Description Values 
14 num Heart disease Not present/4 types 

5 EXAMPLE 

The Cleveland heart disease data set from UC, Irvine has been used to test the system. It 
contains 303 examples of four types of heart disease and its absence. There are thirteen 
continuous- or nominally-valued variables (Table 1). The continuous variables were interval 
coded with one unit per standard deviation away from the mean value. This was chosen since 
they were approximately normally distributed. Nominal variables were coded with one unit 
per value. In total the 14 variables were coded with 55 units. The EM steps were repeated 
until convergence ( 60-150 iterations). A varying number of mixture components (20-120) 
were tried. 

Previously reported results have used only presence or absence of the heart disease. The 
best of these has been a classification rate of 78.9% using a system that incrementally 
built prototypes [Gennari et al., 1989]. We have obtained 78.6% correct classification 
with 60 radial Gaussian mixtures as described above. Performance increased with the 
number of mixture components. It was not sensitive to a varying number of mixture 
components during training unless there were too few of them. Previous investigators have 
pointed out that there is not enough information in the thirteen variables in this data set to 
reach 100% [Gennari et al., 1989]. 

An annotated transcript of a diagnosis session is shown in Figure 1. 

6 CONCLUSIONS AND FURTHER WORK 

Several properties of this model remain to be investigated. It should be tested on several 
more databases. Unfortunately databases are typically proprietary and difficult to obtain. 
Future prospects for medical databases should be good since some hospitals are now using 
computerized record systems instead of traditional paper-based. It should be fairly easy to 



A Mixture Model System for Medical and Machine Diagnosis 

The leftmost number of the five numbers in a line is the estimated probability for no heart 
disease, followed by the probabilities for the four types of heart disease. The entropy, defined 
as - l:. Pi log Pi' of the diagnoses are given at the same time as a measure of how decisive 
the current conclusion is. A completely detennined diagnosis has entropy O. Initially all of 
the variables are unknown and starting diagnoses are the unconditional prior probabilities. 

Disorders (entropy = 1.85): 
0.541254 0.181518 0.118812 0.115512 0.042904 

What is cp ? 3 

The first question is chest pain, and the answer changes the estimated probabilities. This 
variable is continuous. The answer is to be interpreted how far from the mean the observation 
is in standard deviations. As the decision becomes more conclusive, the entropy decreases. 

Disorders (entropy = 0.69): 
0.888209 0.060963 0.017322 0.021657 0.011848 

What is age ? 0 

Disorders (entropy = 0.57): 
0.91307619 0.00081289 0.02495360 0.03832095 0.02283637 

What is oldpeak ? -2 

Disorders (entropy = 0.38): 
0.94438718 0.00089016 0.02539957 0.02691099 0.00241210 

What is chol? -1 

Disorders (entropy = 0.11): 
0.98848758 0.00028553 0.00321580 0.00507073 0 . 00294036 

We have now detennined that the probability of no heart disease in this case is 98.8%. The 
remaining 0.2% is spread out over the other possibilities. 

Figure 1: Diagnosis example. 

generate data for machine diagnosis. 

1083 

An alternative way to choose a new question is to evaluate the variance change in the output 
variables when a variable is changed from missing to observed. The idea is that a variable 
known with certainty has zero variance. The variable with the largest resulting conditional 
variance could be selected as the query, similar to [Cohn et aI., 1995]. 

One important aspect of automated diagnosis is the accompanying explanation for the 
conclusion, a factor that is important for user acceptance. Since the basis functions have 
local support and since we have estimates for the probability of each basis function having 
generated the observed data, explanations for the conclusions could be generated. 

Instead of using the simplified utilities with values 0 and 1 for the expected utility calcula­
tions they could be learned by reinforcement learning. A trained expert would evaluate the 
quality of the diagnosis performed by the system, followed by adjustment of the utilities. 
The 0 and 1 values can be used as starting values. 
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