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Abstract 

We describe the use of smoothing spline analysis of variance (SS­
ANOVA) in the penalized log likelihood context, for learning 
(estimating) the probability p of a '1' outcome, given a train­
ing set with attribute vectors and outcomes. p is of the form 
pet) = eJ(t) /(1 + eJ(t)), where, if t is a vector of attributes, f 
is learned as a sum of smooth functions of one attribute plus a 
sum of smooth functions of two attributes, etc. The smoothing 
parameters governing f are obtained by an iterative unbiased risk 
or iterative GCV method. Confidence intervals for these estimates 
are available. 

1. Introduction to 'soft' classification and the bias-variance tradeoff. 

In medical risk factor analysis records of attribute vectors and outcomes (0 or 1) 
for each example (patient) for n examples are available as training data. Based on 
the training data, it is desired to estimate the probability p of the 1 outcome for any 
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new examples in the future, given their attribute vectors. In 'soft' classification, the 
estimate p of p is of particular interest, and might be used, say, by a physician to 
tell a patient that if he reduces his cholesterol from t to t', then he will reduce his 
risk of a heart attack from p(t) to p(t'). We assume here that p varies 'smoothly' 
with any continuous attribute (predictor variable). 

It is long known that smoothness penalties and Bayes estimates are intimately re­
lated (see e.g. Kimeldorf and Wahba(1970, 1971), Wahba(1990) and references 
there). Our philosophy with regard to the use of priors in Bayes estimates is to 
use them to generate families of reasonable estimates (or families of penalty func­
tionals) indexed by those smoothing or regularization parameters which are most 
relevant to controlling the generalization error. (See Wahba(1990) Chapter 3, also 
Wahba(1992)). Then use cross-validation, generalized cross validation (GCV), un­
biased risk estimation or some other performance oriented method to choose these 
parameter(s) to minimize a computable proxy for the generalization error. A person 
who believed the relevant prior might use maximum likelihood (ML) to choose the 
parameters, but ML may not be robust against an unrealistic prior (that is, ML 
may not do very well from the generalization point of view if the prior is off), see 
Wahba(1985). One could assign a hyperprior to these parameters. However, except 
in cases where real prior information is available, there is no reason to believe that 
the use of hyperpriors will beat out a performance oriented criterion based on a good 
proxy for the generalization error, assuming, of course, that low generalization error 
is the true goal. 

O'Sullivan et al(1986) proposed a penalized log likelihood estimate of I, this work 
was extended to the SS-ANOVA context in Wahba, Gu, Wang and Chappell(1993), 
where numerous other relevant references are cited. This paper is available by 
ftp from ftp. stat. wise. edu, cd pub/wahba in the file soft-class. ps. Z. An 
extended bibliography is available in the same directory as ml-bib. ps. The SS­
ANOVA allows a variety of interpretable structures for the possible relationships 
between the predictor variables and the outcome, and reduces to simple relations 
in some of the attributes, or even, to a two-layer neural net, when the data suggest 
that such a representation is adequate. 

2. Soft classification and penalized log likelihood risk factor estimation 

To describe our 'worldview', let t be a vector of attributes, tEn E T, where n is 
some region of interest in attribute space T. Our 'world' consists of an arbitrarily 
large population of potential examples, whose attribute vectors are distributed in 
some way over n and, considering all members of this 'world' with attribute vectors 
in a small neighborhood about t, the fraction of them that are l's is p(t). Our 
training set is assumed to be a random sample of n examples from this population, 
whose outcomes are known, and our goal is to estimate p(t) for any tEO. In 'soft' 
classification, we do not expect one outcome or the other to be a 'sure thing', that 
is we do not expect p(t) to be 0 or 1 for large portions of n. 
Next, we review penalized log likelihood risk estimates. Let the training data be 
{Yi, t(i), i = 1, ... n} where Yi has the value 1 or 0 according to the classification of 
example i, and t(i) is the attribute vector for example i. If the n examples are a 
random sample from our 'world', then the likelihood function of this data, given 
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p( .), is 
likelihood{y, p} = II~=lP(t(i))Yi (1 - p(t(i) ))l-Yi, (1) 

which is the product of n Bernoulli likelihoods. Define the logit f(t) by f(t) = 
10g[P(t)/(I- p(t))], then p(t) = eJ(t) 1(1 + eJ(t)). Substituting in f and taking logs 
gIves 

n 

-log likelihood{y, f} = £(y, f) = L log(1 + eJ(t(i))) - Yif(t(i)). (2) 
i=l 

We estimate f assuming that it is in some space 1l of smooth functions. (Technically, 
1l is a reproducing kernel Hilbert space, see Wahba(1990), but you don't need to 
know what this is to read on). The fact that f is assumed 'smooth' makes the 
methods here very suitable for medical data analysis. The penalized log likelihood 
estimate f>.. of f will be obtained as the minimizer in 1l of 

n 
£(y, f) + "2)"J(J) (3) 

where J(J) is a suitable 'smoothness' penalty. A simple example is, T = [0,1] and 
J(J) = Jo1 (J(m) (t))2dt, in which case f>.. is a polynomial spline of degree 2m - 1. If 

(4) 

then f>.. is a thin plate spline. The thin plate spline is a linear combination of 
polynomials of degree m or less in d variables, and certain radial basis functions. 
For more details and other penalty functionals which result in rbf's, see Wahba(1980, 
1990, 1992). 

The likelihood function £(y, f) will be maximized if p(t(i)) is 1 or ° according as 
Yi is 1 or 0. Thus, in the (full-rank) spline case, as ).. -+ 0, 1>.. tends to +00 or -00 

at the data points. Therefore, by letting).. be small, we can come close to fitting 
the data points exactly, but unless the 1 's and O's are well separated in attribute 
space, f>.. will be a very 'wiggly' function and the generalization error (not precisely 
defined yet) may be large. 

The choice of ).. represents a tradeoff between overfitting and underfitting the data 
(bias-variance tradeoff). It is important in practice good value of )... We now define 
what we mean by a good value of )... Given the family PA,).. > 0, we want to choose 
).. so that PA is close to the 'true' but unknown p so that, if new examples arrive with 
attribute vector in a neighborhood of t, PA (t) will be a good estimate of the fraction 
of them that are 1 'so 'Closeness' can be defined in various reasonable ways. We use 
the Kullbach-Leibler (K L) distance (not a real distance!). The K L distance between 
two probability measures (g, g) is defined as K L(g, g) = Eg [log (g 1 g)], where Eg 
means expectation given g is the true distribution. If v(t) is some probability 
measure on T, (say, a proxy for the distribution ofthe attributes in the population), 
then define K Lv (p, PA) (for Bernoulli random variables) with respect to v as 

K Lv(p, PA) = J [P(t)log (;(~l)) + (1 - p(t)) log (11 ~ :A(~l)) ] dv(t). (5) 
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Since K Lv is not computable from the data, it is necessary to develop a computable 
proxy for it, By a computable proxy is meant a function of), that can be calculated 
from the training set which has the property that its minimizer is a good estimate 
of the minimizer of K Lv, By letting p>.(t) = e!>.(t) /(1 + e!>.(t») it is seen that to 
minimize K Lv, it is only necessary to minimize 

J [log(l + e!>.(t») - p(t)f>.(t)]dv(t) (6) 

over). since (5) and (6) differ by something that does not depend on )., Leaving­
out-half cross validation (!CV) is one conceptually simple and generally defensible 
(albeit possibly wasteful) way of choosing). to minimize a proxy for K Lv(p, P>.), 
The n examples are randomly divided in half and the first n/2 examples are used 
to compute P>. for a series of trial values of )., Then, the remaining n/2 examples 
are used to compute 

KLl.cv ().) = ~ ~ [log(l + e!>.(t(i») - Yif>.(t(i))] (7) 
~ n ~ 

i::~+l 

for the trial values of ). , Since the expected value of Yi is p(t(i)), (7) is, for each), an 
unbiased estimate of (6) with dv the sampling distribution of the {tel), ,." t(n/2)}, 
). would then be chosen by minimizing (7) over the trial values. It is inappropriate to 
just evaluate (7) using the same data that was used to obtain f>., as that would lead 
to overfitting the data, Variations on (7) are obtained by successively leaving out 
groups of data. Leaving-out-one versions of (7) may be defined, but the computation 
may be prohibitive. 

3. Newton-Raphson Iteration and the Unbiased Risk estimate of A. 

We use the unbiased risk estimate given in Craven and Wahba(1979) for smoothing 
spline estimation with Gaussian errors, which has been adapted by Gu(1992a) for 
the Bernoulli case, To describe the estimate we need to describe the Newton­
Raphson iteration for minimizing (3). Let b(J) = log(l + ef ), then Ley, f) = 
E?::db(J(t(i)) - Yif(t(i))], It is easy to show that Ey; = f(t(i)) = b'(f(t(i)) and 
var Yi = p(t(i))(l - p(t(i)) = b"(f(t(i)). Represent f either exactly by using a 
basis for the (known) n-space of functions containing the solution, or approximately 
by suitable approximating basis functions, to get 

N 

f ~ L CkBk· (8) 
k=l 

Then we need to find C = (C1' . ' . , C N)' to minimize 
n N N 

1>.(c) = L beL CkBk(t(i))) - Yi(L CkBk(t(i))) + ~ ).c'~c, (9) 
;=1 k=l k=l 

where E is the necessarily non-negative definite matrix determined by 
J (Ek Ck Bk) = c'Ec. The gradient \l 1>. and the Hessian \l2l.x of l.x are given by 

= X' (Pc - y) + n).~c, (10) 
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= X' WcX + nXE, (11) 

where X is the matrix with ijth entry Bj(t(i)), Pc is the vector with ith entry Pc (t(i)) 

given by Pc (t(i)) = (1~:c/~g~:») where fcO = 2::=1 ekBk(·), and Wc is the diagonal 
matrix with iith entry Pc(t(i))(I-Pc(t(i))). Given the ith Newton-Raphson iterate 
eCl ), e(l+1) is given by 

e(l+1) = eel) - (X'WC<l) X + nA~)-l(X'(pc(l) - y) + nA~e(l)) 
and e( l+ 1) is the minimizer of 

Iil\e) = IIz(l) - Wcl(~~ Xell 2 + nAe'~e. 
where z(l), the so-called pseudo-data, is given by 

z(l) = Wc(l~/2(y - Pdl») + W:(~~XeCl). 

(12) 

(13) 

(14) 

The 'predicted' value z(l) = W:(~~ X e, where e is the minimizer of (13), is related to 
the pseudo-data z(l) by 

Z(l) = A(l)(A)Z(l), 

where A(l)(A) is the smoother matrix given by 

A(l)(A) = W:(~~ X(X'Wc(l)X + nA~)-l X'W:(~~. 

(15) 

(16) 

In Wahba(1990), Section 9.2 1, it was proposed to obtain a GCV score for A 
in (9) as follows: For fixed A, iterate (12) to convergence. Define VCl)(A) = 
~II(I - A(l) (A))z(l) 112 /(~tr(I - A(l) (A)))2 . Letting L be the converged value of i, 
compute 

VCL)(A) = ~II(I - A(L) (A))z(L) 112 ,...., ~IIW:clr(Y - pC<L»)1I 2 

(~tr(I - A(L)(A)))2 (~tr(I - A(L)(A)))2 
(17) 

and minimize VeL) with respect to A. Gu(1992a) showed that (since the variance 
is known once the mean is known here) that the unbiased risk estimate U (A) in 
Craven and Wahba can also be adapted to this problem as 

U(l)(A) = .!.IIW(l~/2(y - Pc(l»)11 2 + ~tr A(l)(A). (18) 
n c n 

He also proposed an alternating iteration, different than that described in 
Wahba(1990), namely, given eCl) = e(l)(A(l»), find A = ACl+l) to minimize (18). 
Given A(l+!) , do a Newton step to get eCl+1), get A(l+2) by minimizing (18), continue 
until convergence. He showed that the alternating iteration gave better estimates of 
A using V than the iteration in Wahba(1990), as measured by the [( L-distance. His 
results (with the alternating iteration) suggested U had somewhat of an advantage 
over V, and that is what we are using in the present work. Zhao et aI, this volume, 
have used V successfully with the alternating iteration. 

lThe definition of A there differs from the definition here by a factor of n/2. Please 
note the typographical error in (9.2.18) there where A should be 2A. 
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4. Smoothing spline analysis of variance (SS-ANOVA) 

In SS-ANOVA, /(t) = l(t1, ... , td) is decomposed as 

I(t) = I-' + L /a(ta) + L /a/3(ta , t/3) + ... (19) 
a a</3 

where the terms in the expansion are uniquely determined by side conditions which 
generalize the side conditions ofthe usual ANOVA decompositions. Let the logit/(t) 
be of the form (19) where the terms are summed over Ct EM, Ct, f3 E M, etc. where 
M indexes terms which are chosen to be retained in the model after a model selec­
tion procedure. Then 1>..,8, an estimate of I, is obtained as the minimizer of 

£(y, 1>.,8) + )"J8 (I) (20) 

where 
J8(1) = L (J~lJa(fa) + L (J;JJa/3(fa/3) +... (21) 

aEM a,{3EM 

The Ja, Ja/3, ... are quadratic 'smoothness' penalty functionals, and the (J's satisfy 
a single constraint. For certain spline-like smoothness penalties, the minimizer of 
(20) is known to be in the span of a certain set of n functions, and the vector 
c of coefficients of these functions can (for fixed ().., (J)) be chosen by the Newton 
Raphson iteration. Both)" and the (J's are estimated by the unbiased risk estimate 
of Gu using RKPACK( available from netlibClresearch. att. com) as a subroutine 
at each Newton iteration. Details of smoothing spline ANOVA decompositions may 
be found in Wahba(1990) and in Gu and Wahba(1993) (also available by ftp to 
ftp.stat.wisc.edu, cd to pub/wahba , in the file ssanova.ps.Z). In Wahba et 
al(1993) op cit, we estimate the risk of diabetes given some of the attributes in the 
Pima-Indian data base. There M was chosen partly by a screening process using 
paramteric GLIM models and partly by a leaving out approximately 1/3 procedure. 

Continuing work involves development of confidence intervals based on Gu(1992b), 
development of numerical methods suitable for very large data sets based on Gi­
rard's(1991) randomized trace estimation, and further model selection issues. 

In the Figures we provide some preliminary analyses of data from the Wiscon­
sin Epidemiological Study of Diabetic Retinopathy (WESDR, Klein et al 1988). 
The data used here is from people with early onset diabetes participating in the 
WESDR study. Figure 1(left) gives a plot of body mass index (bmi) (a mea­
sure of obesity) vs age (age) for 669 instances (subjects) in the WESDR study 
that had no diabetic retinopathy or non proliferative retinopathy at the start of 
the study. Those subjects who had (progressed) retinopathy four years later, are 
marked as * and those with no progression are marked as '. The contours are 
lines of estimated posterior standard deviation of the estimate p of the proba­
bility of progression. These contours are used to delineate a region in which p 
is deemed to be reliable. Glycosylated hemoglobin (gly), a measure of blood 
sugar control. was also used in the estimation of p. A model of the form 
p = eJ /(1 + eJ ), I(age, gly, bmi) = I-' + h(age) + b· gly + h(bmi) + ha(age, bmi) 
was selected using some of the screening procedures described in Wahba et al(1993), 
along with an examination of the estimated multiple smoothing parameters, which 
indicated that the linear term in gly was sufficient to describe the (quite strong) 
dependence on gly. Figure l(right) shows the estimated probability of progression 
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given by this model. Figure 2(left) gives cross sections of the fitted model of Figure 
1(right), and Figure 2(right) gives another cross section, along with its confidence 
interval. Interesting observations can be made, for example, persons in their late 
20's with higher gly and bmi are at greatest risk for progression of the disease . 

10 20 30 40 50 60 
age (yr) 

...•. ... - . -.. ........ : -... 
............ : ............. . 

' . ..... ": .... : 
• : · · · • · · · · · · 

Figure 1: Left: Data and contours of constant posterior standard deviation at 
the median gly, as a function of age and bmi. Right: Estimated probability of 
progression at the median gly, as a function of age and bmi. 

q -
CD 
o 

o 
o 

q1 bmi 
q2bmi 
q3bmi 
q4bmi 

gy.q2 gy-q3 

10 20 30 40 50 60 
age (yr) 

10 20 30 40 50 60 
age (yr) 

l:jI,,-••• <:AJian 
bmi-median 

10 20 30 40 50 60 
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Figure 2: Left: Eight cross sections of the right panel of Figure 1, Estimated prob­
ability of progression as a function of age, at four levels of bmi by two of gly. 
q1, ... q4 are the quartiles at .125, .375, .625 and .875. Right: Cross section of the 
right panel of Figure 1 for bmi and gly at their medians, as a function of age, 
with Bayesian 'condifidence interval' (shaded) which generalizes Gu(1992b) to the 
multivariate case. 
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