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Abstract 
We apply active exemplar selection (Plutowski &. White, 1991; 
1993) to predicting a chaotic time series. Given a fixed set of ex­
amples, the method chooses a concise subset for training. Fitting 
these exemplars results in the entire set being fit as well as de­
sired. The algorithm incorporates a method for regulating network 
complexity, automatically adding exempla.rs and hidden units as 
needed. Fitting examples generated from the Mackey-Glass equa­
tion with fractal dimension 2.1 to an rmse of 0.01 required about 25 
exemplars and 3 to 6 hidden units. The method requires an order 
of magnitude fewer floating point operations than training on the 
entire set of examples, is significantly cheaper than two contend­
ing exemplar selection techniques, and suggests a simpler active 
selection technique that performs comparably. 

1 Introduction 

Plutowski &. White (1991; 1993), have developed a method of active selection of 
training exemplars for network learning. Active selection uses information about 
the state of the network when choosing new exemplars. The approach uses the sta­
tistical sampling criterion Integrated Squared Bias (ISB) to derive a greedy selection 
method that picks the training example maximizing the decrement in this measure. 
(ISB is a special case of the more familiar Integrated Mean Squared Error in the 
case that noise variance is zero.) We refer to this method as A.ISB. The method 
automatically regulates network complexity by growing the network as necessary 
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to fit the selected exemplars, and terminates when the model fits the entire set of 
available examples to the desired accuracy. Hence the method is a nonparametric 
regression technique. In this paper we show that the method is practical by apply­
ing it to the Mackey-Glass time series prediction task. We compare AISB with 
the method of training on all the examples. AIS8 consistently learns the time 
series from a small subset of the available examples, finding solutions equivalent 
to solutions obtained using all of the examples. The networks obtained by AISB 
consistently perform better on test data for single step prediction, and do at least 
as well at iterated prediction, but are trained at much lower cost . 

Having demonstra.ted that this particular type of exemplar selection is worthwhile, 
we compare AISE with three other exemplar selection methods which are easier 
to code and cost less to compute. We compare the total cost of training, as well 
as the size of the exemplar sets selected. One of the three contending methods was 
suggested by the AISB algorithm, and is also an active selection technique, as its 
calculation involves the network state. Among the four exemplar selection methods, 
we find that the two active selection methods provide the greatest computational 
savings and select the most concise training sets. 

2 The Method 

We are provided with a set of N "candidate" examples of the form (Zi, g(zd) . 
Given g, we can denote this as x N . Let 1(·, w) denote the network function pa­
rameterized by weights w. For a particular subset of the examples denoted x n , let 
Wn = Wn (zn) minimize 

Let w· be the "best" set of weights, which minimizes 

where IJ is the distribution over the inputs. Our objective is to select a subset zn 
of zN such that n < N, while minimizing J(/(z, wn ) - I(z, w·))21J(dz). Thus, 
we desire a subset representative of the whole set. We choose the zn C zN giving 
weights Wn that minimize the Integrated Squared Bias (ISB): 

(1) 

We generate zn incrementally. Given a candidate example Zn+l, let zn+l = 
(zn, Zn+l). Selecting Zl optimally with respect to (1) is straightforward. Then 
given zn minimizing ISB(zn), we opt to select Zn+l E zN maximizing ISB(zn)­
ISB(xn+1). Note that using this property for Zn+1 will not necessarily deliver the 
globally optimal solution. Nevertheless, this approach permits a computationally 
feasible and attractive method for sequential selection of training examples. 
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Choosing Zn+l to maximize this decrement directly is expensive. We use the follow­
ing simple approximation (see Plutowski &- White, 1991) for justification): Given 
zn, select Zn+l E argmaxzn+l~ISB(xn+llzn), where 

N 

6ISB(xn+llzn) = 6Wn+l' L V w!(Zi, wn)(g(zd - !(Zi, wn», 
i=l 

and 
n 

H(zn ,wn ) = LV w!(Zj, wn)Vw!(Zi, wn }' . 

i=l 

In practice we approximate H appropriately for the task at hand. Although we 
arrive at this criterion by making use of approximations valid for large n, this crite­
rion has an appealing interpretation as picking the single example having individual 
error gradient most highly correlated with the average error gradient of the entire 
set of examples. Learning with this example is therefore likely to be especially in­
formative. The 6ISB criterion thus possesses heuristic appeal in training sets of 
any size. 

3 The Algorithm 

Before presenting the algorithm we first explain certain implementation details. We 
integrated the ~I SB criterion with a straightforward method for regulating network 
complexity. We begin with a small network and an initial training set composed of 
a single exemplar. When a new exemplar is added, if training stalls, we randomize 
the network weights and restart training. After 5 stalls, we grow the network by 
adding another unit to each hidden layer. 

Before we can select a new exemplar, we require that the network fit the current 
training set "sufficiently well." Let en(zm) measure the rmse (root mean squared 
error) network fit over m arbitrary examples zm when trained on xn. Let Fn E ~+ 
denote the rmse fit we require over the current set of n exemplars before selecting 
a new one. Let FN E ~+ denote the rmse fit desired over all N examples. (Our 
goal is en(zN) < FN.) It typically suffices to set Fn = FN, that is, to train to a fit 
over the exemplars which is at least as stringent as the fit desired over the entire 
set (normalized for the number of exemplars.) However,. active selection sometimes 
chooses a new exemplar "too close" to previously selected exemplars even when this 
is the case. This is easy to detect, and in this case we reject the new exemplar and 
continue with training. 

We use an "exemplar spacing" parameter d to detect when a new exemplar is too 
close to a previous selection. Two examples Xi and Xi are "close" in this sense if 
they are within Euclidean distance d, and if additionally Ig(Zi) - g(xi)1 < FN. The 
additional condition allows the new exemplar to be accepted even when it is close to 
a previous selection in input space, provided it is sufficiently far away in the output 
space. In our experiments, the input and output space are of the same scale, so we 
set d = FN. When a new selection is too close to a current exemplar, we reject the 
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new selection, reduce Fn by 20%, and continue training, resetting Fn = FN when 
a subsequent selection is appended to the current training set. We now outline the 
algorithm: 

Initialize: 

• Specify user-set parameters: initial network size, the desired fit FN, the 
exemplar spacing parameter, and the maximum number of restarts . 

• Select the first training set, xl = {xd. Set n = 1 and Fn = FN. Train the 
network on xl until en{x 1 ) 5 Fn. 

While(en(xN) > FN) { 
Select a new exemplar, Zn+l E x N , maximizing 6.ISB. 
H (Zn+l is "too close" to any Z E zn) { 

Reject Zn+l 

Reduce Fn by 20%. } 
Else { 

Append Zn+l to zn. 
Increment n. 
Set Fn = FN . } 

While(en(zn} > Fn) { 
Train the network on the current training set zn, 
restarting and growing as necessary. }} 

4 The Problem 

We generated the data from the Mackey-Glass equation (Mackey &, Glass, 1977), 
with T = 17, a = 0.2, and b = 0.1. We integrated the equation using fourth order 
Runge-Kutta with step size 0.1, and the history initialized to 0.5. We generated two 
data sets. We iterated the equation for 100 time steps before beginning sampling; 
this marks t = O. The next 1000 time steps comprise Data Set 1. We generated 
Data Set 2 from the 2000 examples following t = 5000. 

We used the standard feed-forward network architecture with [0, 1] sigmoids and one 
or two hidden layers. Denoting the time series as z(t}, the inputs were z(t), x(t -
6}, z(t - 12), z(t - 18), and the desired output is z(t + 6) (Lapedes &, Farber, 1987). 
We used conjugate gradient optimization for all of the training runs. The line search 
routine typically required 5 to 7 passes through the data set for each downhill step, 
and was restricted to use no more than 10. 

Initially, the single hidden layer network has a single hidden unit, and the 2 hidden 
layer network has 2 units per hidden layer. A unit is added to each hidden layer 
when growing either architecture. All methods use the same growing procedure. 
Thus, other exemplar selection techniques are implemented by modifying how the 
next training set is obtained at the beginning of the outer while loop. The method 
of using all the training examples uses only the inner while loop. 

In preliminary experiments we evaluated sensitivity of 6.ISB to the calculation of 
H. We compared two ways of estimating H, in terms of the number of exemplars 
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selected and the total cost of training. The first approach uses the diagonal terms 
of H (Plutowski &. White, 1993). The second approach replaces H with the identity 
matrix. Evaluated over 10 separate runs, fitting 500 examples to an rmse of 0.01, 
~ISB gave similar results for both approaches, in terms of total computation used 
and the number of exemplars selected. Here, we used the second approach. 

5 The Comparisons 

We performed a number of experiments, each comparing the ~ISB algorithm with 
competing training methods. The competing methods include the conventional 
method of using all the examples, henceforth referred to as "the strawman," as well 
as three other data selection techniques. In each comparison we denote the cost 
as the total number of floating point multiplies (the number of adds and divides is 
always proportional to this count). 

For each comparison we ran two sets of experiments. The first compares the total 
cost of the competing methods as the fit requirement is varied between 0.02, 0.015, 
and 0.01, using the first 500 examples from Data Set 1. The second compares the 
cost as the size of the "candidate" set (the set of available examples) is varied using 
the first 500, 625, 750, 875, and 1000 examples of Data Set I, and a tolerance of 
0.01. To ensure that each method is achieving a comparable fit over novel data, 
we evaluated each network over a test set. The generalization tests also looked at 
the iterated prediction error (IPE) over the candidate set and test set (Lapedes &. 
Farber, 1987). Here we start the network on the first example from the set, and 
feed the output back into the network to obtain predictions in multiples of 6 time 
steps. Finally, for each of these we compare the final network sizes. Each data point 
reported is an average of five runs. For brevity, we only report results from the two 
hidden layer networks. 

6 Comparison With Using All the Examples 

We first compare ~ISB with the conventional method of using all the available 
examples, which we will refer to as "the strawman." For this test, we used the first 
500 examples of Data Set 1. For the two hidden layer architecture, each method 
required 2 units per hidden layer for a fit of 0.02 and 0.015 rmse, and from 3 to 
4 (typically 3) units per hidden layer for a fit of 0.01 rmse. While both methods 
did quite well on the generalization tests, ~ISB clearly did better. Whereas the 
strawman networks do slightly worse on the test set than on the candidate set, 
networks trained by ~ISB tended to give test set fits close to the desired (training) 
fit. This is partially due to the control flow of the algorithm, which often fits the 
candidate set better than necessary. However, we also observed ~ISB networks 
exhibited a test set fit better than the candidate set fit 7 times over these 15 training 
runs. This never occurred over any of the strawman runs. 

Overall, ~ISB networks performed at least as well as the strawman with respect to 
IPE. Figure 1a shows the second half of Data Set 1, which is novel to this network, 
plotted along with the iterated prediction of a ~ISB network to a fit of 0.01, giving 
an IPE of 0.081 rmse, the median IPE observed for this set of five runs. Figure 1b 
shows the iterated prediction over the first 500 time steps of Data Set 2, which is 
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4500 time steps later than the training set. The IPE is 0.086 rmse, only slightly 
worse than over the "nearer" test set. This fit required 22 exemplars. Generalization 
tests were excellent for both methods, although t1ISB was again better overall. 
t1ISB networks performed better on Data Set 2 than they did on the candidate 
set 9 times out of the 25 runs; this never occurred for the strawman. These effects 
demand closer study before using them to infer that data selection can introduce a 
beneficial bias. However, they do indicate that the t1ISB networks performed at 
least as well as the strawman, ensuring the validity of our cost comparisons. 

Figure 1: Itell.ted prediction for a 2 hidden layer network trained to 0.01 rmae over the 
first 500 time steps of Data Set 1. The dotted line gives the network prediction; the solid 
line is the target time series. Figure la, on the left, is over the next (consecutive) 500 time 
steps of Data Set 1, with IPE = 0.081 rmse. Figure Ib, on the right, is over the first 500 
steps of Data Set 2, with IPE = 0.086 rmse. This network was typical, being the median 
IPE of 5 runs. 

Figure 2a shows the average total cost versus required fit FN for each method. 
The strawman required 109, 115, and 4740 million multiplies for the respective 
tolerances, whereas t1ISB required 8, 28, and 219 million multiplies, respectively. 
The strawman is severely penalized by a tighter fit because growing the network 
to fit requires expensive restarts using all of the examples. Figure 2b shows the 
average total cost versus the candidate set sizes. One reason for the difference is 
that t1ISB tended to select smaller networks. For candidate sets of size 500, 625, 
750 and 875, each method typically required 3 units per hidden layer, occasionally 
4. Given 1000 examples, the strawman selected networks larger than 3 hidden units 
per layer over twice as often as t1ISB. t1ISB also never required more than 4 
hidden units per layer, while the strawman sometimes required 6. This suggests 
that the growing technique is more likely to fit the data with a smaller network 
when exemplar selection is used. 
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Figure 2: Cost (in millions of multiplies) oftraining t1ISB, compared to the Strawman. 
Figure 2a on the left gives total cost versus the desired fit, and Figure 2b on the right 
gives total cost versus the number of ca.ndidate examples. Each point is the average of 5 
runs; the error bars are equal in width to twice the standard deviation. 
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7 Contending Data Selection Techniques 

The results above clearly demonstrate that exemplar selection can cut the cost of 
training dramatically. In what follows we compare ~ISB with three other exemplar 
selection techniques. Each of these is easier to code and cheaper to compute, and 
are considerably more challenging contenders than the strawman. In addition to 
comparing the overall training cost we will also evaluate their data compression 
ability by comparing the size of the exemplar sets each one selects. We proceed in 
the same manner as with ~ISB, sequentially growing the training set as necessary, 
until the candidate set fit is as desired. 

Two of these contending techniques do not depend upon the state of the network, 
and are therefore are not "Active Selection" methods. Random Selection selects an 
exampk randomly from the candidate set, without replacement, and appends it to 
the current exemplar set. Uniform Grid exploits the time series representation of 
our data set to select training sets composed of exemplars evenly spaced at regular 
intervals in time. Note that Uniform Grid does. not append a single exemplar to 
the training set, rather it selects an entirely new set of exemplars each time the 
training set is grown. Note further that this technique relies heavily upon the time 
series representation. The problem of selecting exemplars uniformly spaced in the 
4 dimensional input space would be much more difficult to compute. 

The third method, "Maximum Error," was suggested by the ~ISB algorithm, and 
is also an Active Selection technique, since it uses the network in selecting new 
exemplars. Note that the error between the network and the desired value is a 
component of the tiISB criterion. ~ISB need not select an exemplar for which 
network error is maximum, due to the presence of terms involving the gradient 
of the network function. In comparison, the Maximum Error method selects an 
exemplar maximizing network error, ignoring gradient information entirely. It is 
cheaper to compute, typically requiring an order of magnitude fewer multiplies in 
overhead cost as compared to tiISB. This comparison will test, for this particular 
learning task, whether the gradient information is worth its additional overhead. 

7.1 Comparison with Random Selection 

Random Selection fared the worst among the four contenders. However, it still 
performed better overall than the strawman method. This is probably because the 
cost due to growing is cheaper, since early on restarts are performed over small 
training sets. As the network fit improves, the likelihood of randomly selecting 
an informative exemplar decreases, and Random Selection typically reaches a point 
where it adds exemplars in rapid succession, often doubling the size of the exemplar 
set in order to attain a slightly better fit. Random Selection also had a very high 
variance in cost and number of exemplars selected. 

7.2 Comparison with Uniform Grid and Maximum Error 

Uniform Grid and Maximum Error are comparable with tiISB in cost as well as 
in the size of the selected exemplar sets. Overall, tiISB and Maximum Error 
performed about the same, with Uniform Grid finishing respectably in third place. 
Maximum Error was comparable to ~ISB in generalization also, doing better on 
the test set than on the candidate set 10 times out of 40, whereas tiISB did so a 



1142 Plutowski, Cottrell, and White 

total of 16 times . This occurred only 3 times out of 40 for Uniform Grid. 

Figure 3a shows that Uniform Grid requires more exemplars at all three tolerances, 
whereas ~ISB and Maximum Errorselect about the same number. Figure 3b shows 
that Uniform Grid typically requires about twice as many exemplars as the other 
two. Maximum Error and ~ISB selected about the same number of exemplars, 
typically selecting about 25 exemplars, plus or minus two. 
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Figure 3: Number of examples selected by three contending selection techniques: Uni­
form, ~ISB (diamonds) and Max Error (triangles.) Figure 3a on the left gives number of 
examples selected versus the desired fit, and Figure 3b on the right is versus the number 
of candidate examples. The two Active Selection techniques selected about 25 exemplars, 
±2. Each point is the average of 5 runSi the error bars are equal in width to twice the 
standard deviation . The datapoints for ~I SB and Max Error are shifted slightly in the 
graph to make them easier to distinguish. 

8 Conclusions 

These results clearly demonstrate that exemplar selection can dramatically lower 
the cost of training. This particular learning task also showed that Active Selection 
methods are better overall than two contending exemplar selection techniques. 

~I S B and Maximum Error consistently selected concise sets of exemplars, reducing 
the total cost of training despite the overhead associated with exemplar selection. 
This particular learning task did not provide a clear distinction between the two 
Active Selection techniques. Maximum Error is more attractive on problems of this 
scope even though we have not justified it analytically, as it performs about as well 
as ~ISB but is easier to code and cheaper to compute. 
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