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Abstract 

Although the visual and auditory systems share the same basic 
tasks of informing an organism about its environment, most con­
nectionist work on hearing to date has been devoted to the very 
different problem of speech recognition . VVe believe that the most 
fundamental task of the auditory system is the analysis of acoustic 
signals into components corresponding to individual sound sources, 
which Bregman has called auditory scene analysis . Computational 
and connectionist work on auditory scene analysis is reviewed, and 
the outline of a general model that includes these approaches is 
described. 

1 INTRODUCTION 

The primary task of any perceptual system is to tell us about the external world. 
The primary problem is that the sensory inputs provide too much data and too little 
information. A perceptual system must glean from the flood of incomplete, noisy, 
redundant and constantly changing streams of data those invariant properties that 
reveal important objects and events in the environment. For humans, the perceptual 
systems with the widest bandwidths are the visual system and the auditory system. 
There are many obvious similarities and differences between these modalities, and 
in addition to using them to perceive different aspects of the physical world, we also 
use them in quite different ways to communicate with one another. 
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The earliest neural-network models for vision and hearing addressed problems in 
pattern recognition, with optical character recognition and isolated word recogni­
tion among the first engineering applications. However, about twenty years ago 
the research goals in vision and hearing began to diverge. In particular, the need 
for computers to perceive the external environment motivated vision researchers to 
seek the principles and procedures for recovering information about the physical 
world from visual data (Marr, 1982; Ballard and Brown, 1982). By contrast, the 
vast majority of work on machine audition remained focused on the communica­
tion problem of speech recognition (Morgan and Scofield, 1991; Rabiner and Juang, 
1993). While this focus has produced considerable progress, the resulting systems 
are still not very robust, and perform poorly in uncontrolled environments. Fur­
thermore, as Richards (1988) has noted, " ... Speech, like writing and reading, is 
a specialized skill of advanced animals, and understanding speech need not be the 
best route to understanding how we interpret the patterns of natural sounds that 
comprise most of the acoustic spectrum about us." 

In recent years, some researchers concerned with modeling audition have begun to 
shift their attention from speech understanding to sound understanding. The inspi­
ration for much of this activity has come from the work of Bregman, whose book 
on auditory scene analysis documents experimental evidence for important gestalt 
principles that summarize the ways that people group elementary events in fre­
quency /time into sound objects or streams (Bregman, 1990). In this survey paper, 
we briefly review this activity and consider its implications for the development of 
connectionist models for auditory scene analysis. 

2 AUDITORY SCENE ANALYSIS 

In vision, Marr (1982) emphasized the importance of identifying the tasks of the 
visual system and developing a computational theory that is distinct from partic­
ular algorithms or implementations. The computational theory had to specify the 
problems to be solved, the sensory data that is available, and the additional knowl­
edge or assumptions required to solve the problems. Among the various tasks of 
the visual system, Marr believed that the recovery of the three-dimensional shapes 
of the surfaces of objects from the sensory image data was the most fundamental. 

The auditory system also has basic tasks that are more primitive than the recog­
nition of speech. These include (1) the separation of different sound sources, (2) 
the localization of the sources in space (3) the suppression of echoes and reverber­
ation, (4) the decoupling of sources from the environment, (5) the characterization 
of the sources, and (6) the characterization of the environment. Unfortunately, the 
relation between physical sound sources and perceived sound streams is not a sim­
ple one-to-one correspondence. Distributed sound sources, echoes, and synthetic 
sounds can easily confuse auditory perception. Nevertheless, humans still do much 
better at these six basic tasks than any machine hearing system that exists today. 

From the standpoint of physics, the raw data available for performing these tasks 
is the pair of acoustic signals arriving at the two ears. From the standpoint of 
neurophysiology, the raw data is the activity on the auditory nerve. The nonlinear, 
mechallo-neural spectral analysis performed by the cochlea converts sound pres­
sure fluctuations into auditory nerve firings. For better or for worse , the cochlea 
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decomposes the signal into many frequency components, transforming it into a fre­
quency /time (or, more accurately, a place/time) spectrogram-like representation. 
The auditory system must find the underlying order in this dynamic flow of data. 

For a specific case, consider a simple musical mixture of several periodic signals. 
\Vithin its limits of resolution, the cochlea decomposes each individual signal into 
its discrete harmonic components. Yet, under ordinary circumstances, we do not 
hear these components as separate sounds, but rather we fuse them into a single 
sound having, as musicians say, its particular timbre or tone color. However, if 
there is something distinctive about the different signals (such as different pitch or 
different modulation), we do not fuse all of the sounds together, but rather hear the 
separate sources, each with its own timbre. 

What information is available to group the spectral components into sound streams? 
Hartmann (1988) identifies the following factors that influence grouping: (1) com­
mon onset/offset, (2) common harmonic relations, (3) common modulation, (4) 
common spatial origin, (5) continuity of spectral envelope, (6) duration, (7) sound 
pressure level, and (8) context. These properties are easier to name than to pre­
cisely specify, and it is not surprising that no current model incorporates them all. 
However, several auditory scene analysis systems have been built that exploit some 
subset of these cues (''''eintraub, 1985; Cooke, 1993; Mellinger, 1991; Brown, 1992; 
Brown and Cooke, 1993; Ellis, 1993). Although these are computational rather 
than connectionist models, most of them at least find inspiration in the structure 
of the mammalian auditory system. 

3 NEURAL AND CONNECTIONIST MODELS 

The neural pathways from the cochlea through the brainstem nuclei to the auditory 
cortex are complex, but have been extensively investigated. Although this system 
is far from completely understood, neurons in the brainstem nuclei are known to be 
sensitive to various acoustic features - onsets, offsets and modulation in the dorsal 
cochlear nucleus, interaural time differences (lTD's) in the medial superior olive 
(MSO), interaural intensity differences (IID's) in the lateral superior olive (LSO), 
and spatial location maps in the inferior colliculus (Pickles, 1988). 

Both functional and connectionist models have been developed for all of these func­
tions. Because it is both important and relatively well understood, the cochlea 
has received by far the most attention (Allen, 1985). As a result of this work, we 
now have real-time implementations for some of these models as analog VLSI chips 
(Lyon and Mead, 1988; Lazzaro et al., 1993). Connectionist models for sound local­
ization have also been extensively explored. Indeed, one of the earliest of all neural 
network models was Jeffress's classic crosscorrelation model (Jeffress, 1948), which 
was hypothesized forty years before neural crosscorrelation structures were actually 
found in the barn owl (Carr and Konishi, 1988). Models have subsequently been 
proposed for both the LSO (Reed and Blum, 1990) and the TvISO (Han and Col­
burn, 1991). Mathematically, both the lTD and IID cues for binaural localization 
are exposed by crosscorrelation. Lyon showed that cross correlation can also be used 
to separate as well as localize the signals (Lyon, 1983). VLSI cross correlation chips 
can provide this information in real time (Lazzaro and Mead, 1989; Bhadkamkar 
and Fowler, 1993). 
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While interaural crosscorrelation can determine the azimuth to a sound source, 
full three-dimensional localization also requires the determination of elevation and 
range. Because of a lack of symmetry in the orientation of its ears, the barn owl can 
actually determine azimuth from the lTD and elevation from the IID. This at least 
in part explains why it has been such a popular choice for connectionist modeling 
(Spence et al., 1990; Moiseff et al., 1991; Palmieri et al., 1991; Rosen, Rumelhart 
and Knudsen, 1993) . Unfortunately, the localization mechanisms used by humans 
are more complicated. 

It is well known that humans use monaural, spectral shape cues to estimate elevation 
in the median sagittal plane (Blauert, 1983; Middlebrooks and Green, 1991), and 
source localization models based on this approach have been developed (Neti, Young 
and Schneider, 1992; Zakarauskas and Cynander, 1993). The author has shown that 
there are strong binaural cues for elevation at short distances away from the median 
plane, and has used statistical methods to estimate both azimuth and elevation 
accurately from IID data alone (Duda, 1994). In addition, backprop models have 
been developed that can estimate azimuth and elevation from IID and lTD inputs 
jointly (Backman and Karjalainen 93; Anderson, Gilkey and Janko, 1994). 

Finally, psychologists have long been aware of an important reverberation­
suppression phenomenon known as the precedence effect or the law of the first 
wavefront (Zurek , 1987). It is usually summarized by saying that echoes of a sound 
source have little effect on its localization, and are not even consciously heard if 
they are not delayed more than the so-called echo threshold, which ranges from 
5-10 ms for sharp clicks to more than 50 ms for music. It is generally believed 
that the precedence effect can be accounted for by contralateral inhibition in the 
crosscorrelation process, and Lindemann has accounted for many of the phenomena 
by a conceptually simple connectionist model (Lindemann, 1986). 

However, Clifton and her colleagues have found that the echoes are indeed heard 
if the timing of the echoes suddenly changes, as might happen when one moves 
from one acoustic environment into another one (Clifton 1987; Freyman, Clifton 
and Litovsky, 1991). Clifton conjectures that the auditory system is continually 
analyzing echo patterns to model the acoustic environment, and that the resulting 
expectations modify the echo threshold . This suggests that simple crosscorrelation 
models will not be adequate when the listener is moving, and thus that even the 
localization problem is still unsolved. 

4 ARCHITECTURE OF AN AUDITORY MODEL 

If we look back at the six basic tasks for the auditory system, we see that only one 
(source localization) ha.s received much attention from connectionist researchers, 
and its solution is incomplete. In particular, current localization models cannot 
handle multiple sources and cannot cope with significant room echoes and reverber­
ation. The common problem for all of the basic tasks is that of source separation, 
which only the a.uditory scene analysis systems have addressed. 

Fig. 1 shows a functional block diagram for a hypothetical auditory model that 
combines the computational and connectionist models and has the potential of 
coping with a multisource environment . The inputs to the model are the left-ear 
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and right-ear signals, and the main output is a dynamic set of streams. The system 
is primarily data driven, although low-bandwidth efferent paths could be added for 
tasks such as automatic gain control. 

Data flow on the left half of the diagram is monaural, and dataflow of the right 
half is binaural. The binaural processing is based on crosscorrelation analysis of 
the cochlear outputs. The author has shown that interaural differences not only 
effective in determining azimuth, but can also be used to determine elevation as well 
(Duda, 1994). V\'e have chosen to follow Slaney and Lyon (Slaney and Lyon, 1993) 
in basing the monaural analysis on autocorrelation analysis. Originally proposed 
by Licklider (1951) to explain pitch phenomena, autocorrelation is a biologically 
plausible operation that supports the common onset, modulation and harmonicity 
analysis needed for stream formation (Duda, Lyon and Slaney, 1990; Brown and 
Cooke, 1993). 

While the processes at lower levels of this diagram are relatively well understood, 
the process of stream formation is problematic. Bregman (1990) has posed this 
problem in terms of grouping the components of the "neural spectrogram" in both 
frequency and time. He has identified two principles that seem to be employed 
in stream formation: exclusive allocation (a component may not be used in more 
than one description at a time) and accounting (all incoming components must be 
assigned to some source). The various auditory scene analysis systems that we 
mentioned earlier provide different mechanisms for exploiting these principles to 
form auditory streams. Unfortunately, the principles admit of exceptions, and the 
existing implementations seem rather ad hoc and arbitrary. The development of a 
biologically plausible model for stream formation is the central unsolved problem 
for connectionist research in audition. 
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Analysis 

Spectral Analysis 
(Cochlear Model) 

I 
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Figure 1: Block diagram for a basic auditory model 
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