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This study explores the extent to which a network that learns the 
temporal relationships within and between the component features of 
Western tonal music can account for music theoretic and psychological 
phenomena such as the tonal hierarchy and rhythmic expectancies. 
Predicted and generated sequences were recorded as the representation of 
a 153-note waltz melody was learnt by a predictive, recurrent network. 
The network learned transitions and relations between and within pitch 
and timing components: accent and duration values interacted in the 
development of rhythmic and metric structures and, with training, the 
network developed chordal expectancies in response to the activation of 
individual tones. Analysis of the hidden unit representation revealed 
that musical sequences are represented as transitions between states in 
hidden unit space. 

1 INTRODUCTION 

The fundamental features of music, derivable from frequency, time and amplitude 
dimensions of the physical signal, can be described in terms of two systems - pitch and 
timing. The two systems are frequently disjoined and modeled independently of one 
another (e.g. Bharucha & Todd, 1989; Rosenthal, 1992). However, psychological 
evidence suggests that pitch and timing factors interact (Jones, 1992; Monahan, Kendall 
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& Carterette, 1987). The pitch and timing components can be further divided into tone, 
octave, duration and accent which can be regarded as a quasi-componential code. The 
important features of a componential code are that each component feature can be viewed 
as systematic in its own right (Fodor & Pylyshyn, 1988). The significance of 
componential codes for learning devices lies in the productivity of the system - a small 
(polynomial) number of training examples can generalise to an exponential test set 
(Brousse & Smolensky, 1989; Phillips & Wiles, 1993). We call music a quasi­
componential, code as there are significant interactions between, as well as within, the 
component features (we adopt this term from its use in describing other cognitive 
phenomena, such as reading, Plaut & McClelland, 1993). 

Connectionist models have been developed to investigate various aspects of musical 
behaviour including composition (Hild, Feulner & Menzel, 1992), performance (Sayegh, 
1989), and perception (Bharucha & Todd, 1989). The models have had success in 
generating novel sequences (Mozer, 1991), or developing properties characteristic of a 
listener, such as tonal expectancies (Todd, 1988), or reflecting properties characteristic of 
musical structure, such as hierarchical organisation of notes, chords and keys (Bharucha, 
1992). Clearly, the models have been designed with a specific application in mind and, 
although some attention has been given to the representation of musical information 
(e.g. Mozer, 1991; Bharucha, 1992), the models rarely explain the way in which musical 
representations are constructed and learned. These models typically process notes which 
vary in pitch but are of constant duration and, as music is inherently temporal, the 
temporal properties of music must be reflected in both representation and processing. 

There is an assumption implicit in cognitive modeling in the in/ormation processing 
framework that the representations used in any cognitive process are specified a priori 
(often assumed to be the output of a perceptual process). In the neural network 
framework, this view of representation has been challenged by the specification of a dual 
mechanism which is capable of learning representations and the processes which act upon 
them. Since the systematic properties of music are inherent in Western tonal music as 
an environment, they must also be reflected in its representation in, and processes of, a 
cognitive system. Neural networks provide a mechanism for learning such 
representations and processes, particularly with respect to temporal effects. 

In this paper we study how representations can be learned in the domain of Western tonal 
music. Specifically, we use a recurrent network trained on a musical prediction task to 
construct representations of context in a musical sequence (a well-known waltz), and then 
test the extent to which the learned representation can account for the classic phenomena 
of music cognition. We see the representation construction as one aspect of learning and 
memory in music cognition, and anticipate that additional mechanisms of music 
cognition would involve memory processes that utilise these representations (e.g. 
Stevens & Latimer, 1992), although they are beyond the scope of the present paper. For 
example, Mozer (1992) discusses the development of higher-order, global representations 
at the level of relations between phrases in musical patterns. By contrast, the present 
study focusses on the development of representations at the level of relations between 
individual musical events. We expect that the additional mechanisms would, in part, 
develop from the behavioural aspects of music cognition that are made explicit at this 
early, representation construction stage. 
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2 METHOD & RESULTS 

A simple recurrent network (Elman. 1989), consisting of 25 input and output units, and 
20 hidden and context units. was trained according to Elman's prediction paradigm and 
used Backprop Through Time (BPlT) for one time step. The training data comprised the 
nrst 2 sections of The Blue Danube by Johann Strauss wherein each training pattern 
represented one event, or note. in the piece, coded as components of tone (12 values), rest 
(1 value), octave (3 values), duration (6 values) and accent (3 values). 

In the early stages of training, the network learned to predict the prior probability of 
events (see Figure 1). This type of information could be encoded in the bias of the 
output units alone. as it is independent of temporal changes in the input patterns. After 
further training, the network learned to modify its predictions based on the input event 
(purely feed forward information) and, later still, on the context in which the event 
occurred (see Figure 2). Note that an important aspect of this type of recurrent network 
is that the representation of context is created by the network itself (Elman, 1989) and is 
not specified a priori by the network designer or the environment (Jordan, 1986). In this 
way, the context can encode the information in the envirorunent which is relevant to the 
prediction task. Consequently, the network could, in principle, be adapted to other styles 
of music without modification of the design, or input and output representations. 

a. Output vector 
n, 

__ ~--'"'-_---'"~_~~_----' L- _JLl ~ 1-' _~ __ 

b. Target histogram 
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Figure 1: Comparison of output vector for the first event at Epoch 4 (a) and a histogram 
of the target vector averaged over all events (b). The upper grapb is the predicted output 
of Event 1 at Epoch 4. The lower grapb is a histogram of all the events in the piece, 
created by averaging all the target vectors. The comparison shows that the net learned 
initially to predict the mean target before learning the variations specific to each event. 
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Figure 2: Evolution of the flrst eight events (predicted). The first block (targets) shows 
the correct sequence of events for the four components. In the second block (Epoch 2), 
the net is beginning to predict activation of strong and weak accents. In the third block 
(Epoch 4), the transition from one octave to another is evident. By the fourth block 
(Epoch 64), all four components are substantially correct. The pattern of activation 
across the output vector can be interpreted as a statistical description of each musical 
event. In psychological terms, the pattern of activation reflects the harmonic or chordal 
expectancies induced by each note (Bharucha, 1987) and characteristic of the tonal 
hierarchy (Krumhansl & Shepard, 1979). 

3.1 NETWORK PERFORMANCE 

The performance of the network as it learned to master The Blue Danube was recorded at 
log steps up to 4096 epochs. One recording comprised the output predicted by the 
network as the correct event was recycled as input to the network (similar to a teacher­
forcing paradigm). The second recording was generated by feeding the best guess of the 
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output back as input. The accent - the lilt of the waltz - was incorporated very early in 
the training. Despite numerous errors in the individual events, the sequences were clearly 
identifiable as phrases from The Blue Danube and, for the most part, errors in the tone 
component were consistent with the tonality of the piece. The errors are of 
psychological importance and the overall performance indicated that the network learnt 
the typical features of The Blue Danube and the waltz genre. 

3.2 INTERACTIONS BETWEEN ACCENT & DURATION 

Western tonal music is characterised by regularities in pitch and timing components. For 
example, the occurrence of particular tones and durations in a single composition is 
structured and regular given that only a limited number of the possible combinations 
occur. Therefore, one way to gauge performance of the network is to compare the 
regularities extracted and represented in the model with the statistical properties of 
components in the training composition. The expected frequencies of accent-duration 
pairs, such as a quarter-note coupled with a strong accent, were compared with the actual 
frequency of occurrence in the composition: the accent and duration couplings with the 
highest expected frequencies were strong quarter-note (35.7), strong half-note (10.2), weak 
quarter-note (59.0), and weak half-note (16.9). Scrutiny of the predicted outputs of the 
network over the time course of learning showed that during the initial training epochs 
there was a strong bias toward the event with the highest expected frequency - weak 
quarter-note. The output of this accent-duration combination by the network decreased 
gradually. Prediction of a strong quarter-note by the network reached a value close to the 
expected frequency of 35.7 by Epoch 2 (33) and then decreased gradually and approximated 
the actual composition frequency of 19 at Epoch 64. Similarly, by Epoch 64, output of 
the most common accent and duration pairs was very close to the actual frequency of 
occurrence of those pairs in the composition. 

3. 3 ANALYSIS OF HIDDEN UNIT ~EPRESENT A TIONS 

An analysis of hidden unit space most often reveals structures such as regions, hierarchies 
and intersecting regions (Wiles & Bloesch, 1992). In the present network, four sub­
spaces would be expected (tone, octave, duration, accent), with events lying at the 
intersection of these suo-spaces. A two-dimensional projection of hidden unit space 
produced from a canonical discriminant analysis (CDA) of duration-accent pairs reveals 
these divisions (see Figure 3). In essence, there is considerable structure in the way 
events are represented into clusters of regions with events located at the intersection of 
these regions. In Figure 3 the groups used in the CDA relate to the output values which 
are observable groups. An additional CDA using groups based on position in bar showed 
that the hidden unit space is structured around inferred variables as well as observable 
ones. 
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Figure 3: Two-dimensional projection of hidden unit space generated by canonical 
discriminant analysis of duration-accent pairs. Each note in the composition is depicted 
as a labelled point, and the flrst and third canonical components are represented along the 
abscissa and ordinate. respectively. The first canonical component divides strong from 
weak accents (denoted s and w). In the strong (s) accent region of the third canonical 
component, quarter- and half-notes are separated (denoted by 2 and 4, respectively), and 
the remaining right area separates rests, weak quarter- and weak half-notes. The 
superimposed line shows the first five notes of the opening two bars of the composition 
as a trajectory through hidden unit space: there is movement along the flrst canonical 
component depending on accent (s or w) and the second bar starts in the half-note region. 

4 DISCUSSION & CONCLUSIONS 

The focus of this study has been the extraction of information from the envirorunent­
the temporal stream of events representing The Blue Danube - and its incorporation into 
the static parameters of the weights and biases in the network. Evidence for the stages at 
which information from the environment is incorporated into the network representation 
is seen in the predicted output vectors (described above and illustrated in Figure 2). 
Different musical styles contain different kinds of infonnation in the components. For 
example. the accent and duration components of a waltz take complementary roles in 
regulating the rhythm. From the durations of events alone, the position of a note in a 
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bar could be predicted without error. However, if the performer or listener made a single 
error of duration, a rhythm system based on durations alone could not recover. By 
contrast, accent is not a completely reliable predictor of the bar structure, but it is 
effective for recovery from rhythmic errors. The interaction between these two timing 
components provides an efficient error correction representation for the rhythmic aspect of 
the system. Other musical styles are likely to have similar regulatory functions 
performed by different components. For example, consider the use of ornaments, such as 
trills and mordents, in Baroque harpsichord music which, in the absence of variations in 
dynamics, help to signify the beat and metric structure. Alternatively, consider the 
interaction between pitch and timing components with the placement of harmonically­
important tones at accented positions in a bar (Jones, 1992). 

The network described here has learned transitions and relations between and within pitch 
and timing musical components and not simply the components per se. The interaction 
between accent and duration components, for example, demonstrates the manifestation of 
a componential code in Western tonal music. Patterns of activation across the output 
vector represented statistical regularities or probabilities characteristic of the composition. 
Notably, the representation created by the network is reminiscent of the tonal hierarchy 
which reflects the regularities of tonal music and has been shown to be responsible for a 
number of performance and memory effects observed in both musically trained and 
untrained listeners (Krumhansl, 1990). The distribution of activity across the tone 
output units can also be interpreted as chordal or harmonic expectancies akin to those 
observed in human behaviour by Bharucha & Stoeckig (1986). The hidden unit 
activations represent the rules or grammar of the musical environment; an interesting 
property of the simple recurrent network is that a familiar sequence can be generated by 
the trained network from the hidden unit activations alone. Moreover, the intersecting 
regions in hidden unit space represent composite states and the musical sequence is 
represented by transitions between states. Finally, the course of learning in the network 
shows an increasing specificity of predicted events to the changing context: during the 
early stages of training, the default output or bias of the network is towards the average 
pattern of activation across the entire composition but, over time, predictions are refined 
and become attuned to the pattern of events in particular contexts. 
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