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Abstract 

Most theoretical investigations of large recurrent networks focus on 
the properties of the macroscopic order parameters such as popu­
lation averaged activities or average overlaps with memories. How­
ever, the statistics of the fluctuations in the local activities may 
be an important testing ground for comparison between models 
and observed cortical dynamics. We evaluated the neuronal cor­
relation functions in a stochastic network comprising of excitatory 
and inhibitory populations. We show that when the network is in 
a stationary state, the cross-correlations are relatively weak, i.e., 
their amplitude relative to that of the auto-correlations are of or­
der of 1/ N, N being the size of the interacting population. This 
holds except in the neighborhoods of bifurcations to nonstationary 
states. As a bifurcation point is approached the amplitude of the 
cross-correlations grows and becomes of order 1 and the decay time­
constant diverges. This behavior is analogous to the phenomenon 
of critical slowing down in systems at thermal equilibrium near a 
critical point. Near a Hopf bifurcation the cross-correlations ex­
hibit damped oscillations. 
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1 INTRODUCTION 

In recent years there has been a growing interest in the study of cross-correlations 
between the activities of pairs of neurons in the cortex. In many cases the cross­
correlations between the activities of cortical neurons are approximately symmetric 
about zero time delay. These have been taken as an indication of the presence of 
"functional connectivity" between the correlated neurons (Fetz, Toyama and Smith 
1991, Abeles 1991). However, a quantitative comparison between the observed 
cross-correlations and those expected to exist between neurons that are part of a 
large assembly of interacting population has been lacking. 

Most of the theoretical studies of recurrent neural network models consider only time 
averaged firing rates, which are usually given as solutions of mean-field equations. 
They do not account for the fluctuations about these averages, the study of which 
requires going beyond the mean-field approximations. In this work we perform a 
theoretical study of the fluctuations in the neuronal activities and their correlations, 
in a large stochastic network of excitatory and inhibitory neurons. Depending on the 
model parameters, this system can exhibit coherent undamped oscillations. Here we 
focus on parameter regimes where the system is in a statistically stationary state, 
which is more appropriate for modeling non oscillatory neuronal activity in cortex. 
Our results for the magnitudes and the time-dependence of the correlation functions 
can provide a basis for comparison with physiological data on neuronal correlation 
functions. 

2 THE NEURAL NETWORK MODEL 

We study the correlations in the activities of neurons in a fully connected recurrent 
network consisting of excitatory and inhibitory populations. The excitatory con­
nections between all pairs of excitatory neurons are assumed to be equal to J / N 
where N denotes the number of excitatory neurons in the network. The excitatory 
connections from each of the excitatory neurons to each of the inhibitory neurons 
are J' / N. The inhibitory coupling of each of the inhibitory neurons onto each of 
the excitatory neurons is K / M where M denotes the number of inhibitory neurons. 
Finally, the inhibitory connections between pairs of inhibitory neurons are ](' / M. 
The values of these parameters are in units of the amplitude of the local noise (see 
below). Each neuron has two possible states, denoted by Si = ±1 and Ui = ±1 
for the i-th excitatory and inhibitory neurons, respectively. The value -1 denotes 
a quiet state. The value + 1 denotes an active state that corresponds to a state 
with high firing rate. The neurons are assumed to be exposed to local noise result­
ing in stochastic dynamics of their states. This dynamics is specified by transition 
probabilities between the -1 and + 1 states that are sigmoidal functions of their 
local fields. The local fields of the i-th excitatory neuron, Ei and the i-th inhibitory 
neuron, Ii, at time t, are 

Ei(t) = J s(t) - K u(t) - () (1) 

J's(t) - K' u(t) - () (2) 
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where () represents the local threshold and sand 0' are the population-averaged 
activities s(t) = l/N"'£j Sj(t), and O'(t) = l/M"'£j O'j(t) of the excitatory and 
inhibitory neurons, respectively. 

3 AVERAGE FIRING RATES 

The macroscopic state of the network is characterized by the dynamics of s(t) 
and O'(t). To leading order in l/N and l/M, they obey the following well known 
equations 

ds 
TO dt = -s + tanh(Js - J{O' - 0) (3) 

dO' (I -,I ) 
TO- = -0' + tanh J s - K 0' - 0 

dt 
(4) 

where TO is the microscopic time constant of the system. Equations of this form for 
the two population dynamics have been studied extensively by Wilson and Cowan 
(Wilson and Cowan 1972) and others (Schuster and Wagner 1990, Grannan, Kle­
infeld and Sompolinsky 1992) 

Depending on the various parameters the stable solutions of these equations are 
either fixed-points or limit cycles. The fixed-point solutions represent a stationary 
state of the network in which the popUlation-averaged activities are almost constant 
in time. The limit-cycle solutions represent nonstationary states in which there 
is a coherent oscillatory activity. Obviously in the latter case there are strong 
oscillatory correlations among the neurons. Here we focus on the fixed-point case. 
It is described by the following equations 

So = tanh ( J So - K 0'0 - 0) 

0'0 = tanh (J' So - K'O'o - 0) 

(5) 

(6) 

where So and 0'0 are the fixed-point values of sand O'. Our aim is to estimate the 
magnitude of the correlations between the temporal fluctuations in the activities of 
neurons in this statistically stationary state. 

4 CORRELATION FUNCTIONS 

There are two types of auto-correlation functions, for the two different populations. 
For the excitatory neurons we define the auto-correlations as: 

(7) 

where 6si (t) = Sj(t)-so and < ... >t means average over time t. A similar definition 
holds for the auto-correlations of the inhibitory neurons. In our network there are 
three different cross-correlations: excitatory-excitatory, inhibitory- inhibitory, and 
inhibitory-excitatory. The excitatory-excitatory correlations are 

Cij(T) = {8si(t)8sj(t + T)}t 

Similar definitions hold for the other functions. 

(8) 



474 Ginzburg and Sompolinsky 

We have evaluated these correlation functions by solving the equations for the cor­
relations of 6Si(t) in the limit of large Nand M. We find the following forms for 
the correlations: 

1 3 

Gii(T) ~ (1- s~)exp(-A1T) + N La,exp(-AIT) 
'=1 

(9) 

1 3 

Gij(T)~ NLb,exP(-A,T) . 
1=1 

(10) 

The coefficients a, and b, are in general of order 1. The three A, represent three 
inverse time-constants in our system, where Re(AI) ~ Re(A2) ~ Re(A3)' The first 
inverse time constant equals simply to Al = liTo, and corresponds to a purely 
local mode of fluctuations. The values of A2 and A3 depend on the parameters of 
the system. They represent two collective modes of fluctuations that are coherent 
across the populations. An important outcome of our analysis is that A2 and A3 
are exactly the eigenvalues of the stability matrix obtained by linearizing Eqs. (3) 
and (4) about the fixed-point Eqs. (5) and (6) . 

The above equations imply two differences between the auto-correlations and the 
cross-correlations. First, Gii are of order 1 whereas in general Gij is of 0(1/ N). 
Secondly, the time-dependence of Gii is dominated by the local, fast time constant 
TO, whereas Gij may be dominated by the slower, collective time-constants. 

The conclusion that the cross-correlations are small relative to the auto-correlations 
might break down if the coefficients b, take anomalously large values. To check these 
possibility we have studied in detail the behavior of the correlations near bifurcation 
points, at which the fixed point solutions become unstable. For concreteness we will 
discuss here the case of Hopfbifurcations. (Similar results hold for other bifurcations 
as well). Near a Hopf bifurcation A2 and A3 can be written as A± ~ € ± iw, 
where € > 0 and vanishes at the bifurcation point. In this parameter regime, the 
amplitudes b1 « b2, b3 and b2 ~ b3 ~ ~. Similar results hold for a2 and a3. Thus, 
near the bifurcation, we have 

Gii ( T) ~ (1 - s~) exp( -T /ro)cos(wr) 

B 
Gij(r) ~ N€ exp(-€r)cos(wr) . 

(11) 

(12) 

Note that near a bifurcation point € is linear in the difference between any of the 
parameters and their value at the bifurcation. The above expressions hold for 
€« 1 but large compared to l/N.When € ~ liN the cross-correlation becomes of 
order 1, and remains so throughout the bifurcation. 

Figures 1 and 2 summarize the results of Eqs. (9) and (10) near the Hopf 
bifurcation point at J,J',K,K',O = 225,65, 161,422,2.4. The population sizes 
are N = 10000, M = 1000. We have chosen a parameter range so that the fixed 
point values of So and lTo will represent a state with low firing rate resembling 
the spontaneous activity levels in the cortex. For the above parameters the rates 
relative to the saturation rates are 0.01 and 0.03 for the excitatory and inhibitory 
populations respectively. 
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FIG URE 1. The equal-time cross-correlations between a pair of excitatory neu­
rons, and the real part of its inverse time-constant,f, vs. the excitatory coupling 
parameter J. 

The values of Cij (0) and of the real-part of the inverse-time constants of Cij are 
plotted (Fig. 1) as a function of the parameter J holding the rest of the parameters 
fixed at their values at the bifurcation point. Thus in this case f a(225 - J). The 
Figure shows the growth of Cij and the vanishing of the inverse time constant as 
the bifurcation point is approached. 
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The time-dependence of the cross-correlations near the bifurcation (J = 215) is 
shown in Fig. 2. Time is plotted in units of TO. The pronounced damped oscillations 
are, according to our theory, characteristic of the behavior of the correlations near 
but below a Hopf bifurcation. 
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5 CONCLUSION 

Most theoretical investigations of large recurrent networks focus on the properties of 
the macroscopic order parameters such as population averaged activity or average 
overlap with memories. However, the statistics of the fluctuations in the activities 
may be an important testing ground for comparison between models and observed 
cortical dynamics. We have studied the properties of the correlation functions in a 
stochastic network comprising of excitatory and inhibitory populations. We have 
shown that the cross-correlations are relatively weak in stationary states, except in 
the neighborhoods of bifurcations to nonstationary states. The growth of the am­
plitude of these correlations is coupled to a growth in the correlation time-constant. 
This divergence of the correlation time is analogous to the phenomenon of critical 
slowing down in systems at thermal equilibrium near a critical point. Our analysis 
can be extended to stochastic networks consisting of a small number of interacting 
homogeneous populations. 

Detailed comparison between the model's results and experimental values of auto­
and cross- correlograms of extracellularly measured spike trains in the neocortex 
have been carried out (Abeles, Ginzburg and Sompolinsky). The tentative con­
clusion of this study is that the magnitude of the observed correlations and their 
time-dependence are inconsistent with the expected ones for a system in a sta­
tionary state. They therefore indicate that cortical neuronal assemblies are in a 
nonstationary (but aperiodic) dynamic state. 
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