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Abstract 

Previously, we had developed the concept of a Segmental Neural Net (SNN) for 
phonetic modeling in continuous speech recognition (CSR). This kind of neu­
ral network technology advanced the state-of-the-art of large-vocabulary CSR, 
which employs Hidden Marlcov Models (HMM), for the ARPA 1oo0-word Re­
source Management corpus. More Recently, we started porting the neural net 
system to a larger, more challenging corpus - the ARPA 20,Ooo-word Wall Street 
Journal (WSJ) corpus. During the porting, we explored the following research 
directions to refine the system: i) training context-dependent models with a reg­
ularization method; ii) training SNN with projection pursuit; and ii) combining 
different models into a hybrid system. When tested on both a development set 
and an independent test set, the resulting neural net system alone yielded a per­
fonnance at the level of the HMM system, and the hybrid SNN/HMM system 
achieved a consistent 10-15% word error reduction over the HMM system. This 
paper describes our hybrid system, with emphasis on the optimization methods 
employed. 

1 INTRODUCTION 

Hidden Martov Models (HMM) represent the state-of-the-art for large-vocabulary con­
tinuous speech recognition (CSR). Recently, neural network technology has been shown 
to advance the state-of-the-art for CSR by integrating neural nets and HMMs [1,2]. In 
principle, the advance is based on the fact that neural network modeling can avoid some 
limitations of the HMM modeling, for example, the conditional-independence assumption 
of HMMs and the fact that segmental features are hard to incorporate. Our work has been 
based on the concept of a Segmental Neural Net (SNN) [2]. 
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A segmental neural network is a neural network that attempts to recognize a complete 
phoneme segment as a single unit. Its basic structure is shown in Figure 1. The input 
to the network is a fixed length representation of the speech segment, which is obtained 
from the warping (quasi-linear sampling) of a variable length phoneme segment. If the 
network is trained to minimize a least squares error or a cross entropy distortion measure, 
the output of the network can be shown to be an estimate of the posterior probability of 
the phoneme class given the input segment [3,4]. 

warping 

phonetic .egment 

.core 

neural 
network 

Figure 1: The SNN model samples the frames and produces a single segment score. 

Our inith1 SNN system comprised a set of one-layer sigmoidal nets. This system is trained 
to minimize a cross entropy distortion measure by a quasi-Newton error minimization 
algorithm. A vanable length segment is warped into a fixed length of 5 input frames. 
Since each frame includes 16 feature~, 14 mel cepstrum, power and difference of power, 
an input to the neural network forms a 16 x 5 = 80 dimensional vector. 

Previously, our experimental domain was the ARPA 1000-word Resource Management 
(RM) Corpus, where we used 53 output phoneme classes. When tested on three independent 
evaluation sets (Oct 89, Feb 91 and Sep 92), our system achieved a consistent 10-20% 
word error rate reduction over the state-of-the-art HMM system [2]. 

2 THE WALL STREET JOURNAL CORPUS 

After the final September 92 RM corpus evaluation, we ported our neural network system 
to a larger corpus - the Wall Street Journal (WSJ) Corpus. The WSJ corpus consists 
primarily of read speech, with a 5,000- to 20,000-word vocabulary. It is the current ARPA 
speech recognition research corpus. Compared to the RM corpus, it is a more challenging 
corpus for the neural net system due to the greater length of WSJ utterances and the 
higher perplexity of the WSJ task. So we would expect greater difficulty in improving 
perfOITnClllCe on the WSJ corpus. 
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3 TRAINING CONTEXT-DEPENDENT MODELS WITH 
REGULARIZATION 

3.1 WHY REGULARIZATION 

In contrast to the context-independent modeling for the RM corpus, we are concentrating on 
context-dependent modeling for the WSJ corpus. In context-dependent modeling, instead 
of using a single neural net to recognize phonemes in all contexts, different neural networks 
are used to recognize phonemes in different contexts. Because of the paucity of training 
data for some context models, we found that we had an overfitting problem. 

Regularization provides a class of smoothing techniques to ameliorate the overfitting prob­
lem [5]. We started using regularization in our initial one-layer sigmoidal neural network 
system. The regularization tenn added here is to regulate how far the context-dependent 
parameters can move away from their initial estimates, which are context-independent pa­
rameters. TIus is different from the usual weight decay technique in neural net literature, 
and it is designed specifically for our problem. The objective function is shown below: 

- ~ d ~ [~IOg(1 - J.) + ~ log f} :'IIW ~ .WolI~ (I) 

, J Regulanzatton Tenn 
v 

Distortion measure Er(W) 

where Ii is the net output for class i, II W II is the Euclidean nonn of all weights in all 
the networks, IIWol1 is the initial estimate of weights from a context-independent neural 
network, Nd is the number of data points. ). is the regularization parameter which controls 
the tradeoff between the "smoothness" of the solution, as measured by IIW - Wo11 2, and 
the deviation from the data as measured by the distortion. 

The optimal )., wllich gives the best generalization to a test set, can be estimated by 
generalized cross-validation [5]. If the distortion measure as shown in (2) 

(2) 

is a qu:.:-ctratic function in tenns of network weights W, the optimal ). is that which gives 
the minin,um of a generalized cross-validation index V().) [6]: 

Nt IIA()') - bW 
V(),) = d 

I - ~d tr(A()')) 
(3) 

where A(>.) = A(AT A+Nd)'I)AT . V()') is an easily calculated function based on singular 
value decomposition (SVD): 

(4) 

where A = U DVT , singular decomposition of A, z = UT b. Figure 2 shows an example 
plot of V().). A typical optimal ). has an inverse relation to the number of samples in each 
class, indicating that ). is gradually reduced with the presence of more data. 



1062 Zhao, Schwartz, Makhoul, and Zavaliagkos 

CI: 
~ ~------------------------------------------. 

o 
8 
o 
8 
§ 

~ I 
I 
R 

~ I 

o 5*10"-7 2.5*1011-6 

lambda 

Figure 2: A typical V(A) 

Just as the linear least squares method can be generalized to a nonlinear least squares 
problem by an iterative procedure, so selecting the optimal value of the regularization 
parameter in a quadratic error criterion can be generalized to a non-quadratic error criterion 
iteratively. We developed an iterative procedure to apply the cross-validation technique to 
a non-..]uadratic error function, for example, the cross-entropy criterion Er(W) in (1) as 
follows: 

1. Compute distortion Er(Wn ) for an estimate Wn • 

2. Compute gradient gn and Hessian Hn of the distortion Er(Wn ). 

3. Compute the singular value decomposition of Hn = V! Dn Vn . Set Zn = v"gn. 

4. Evaluate a generalized cross-validation index Vn(A) similar to (2) as follows, for a 
range of A'S and select the An that gives the minimum Vn • 
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N [E TifT) " !dj+Nd.\ 2] 
d r(Hn - L.Jj (dj+Nd.\)2Zn 

VnC\) = 2 

[Nd - Lj dj:1vd'\] 

(5) 

5. Set Wn+l = Wn - (Hn + NdAn)-lgn. 

6. Go to 1 and iterate. 

Note that A is adjusted at each iteration. The final value of An is taken as the optimal A. 

Iterative regularization parameter selection shows that A converges, for example, to 1~~' 
from one of our experiments. 

3.2 A TWO-LAYER NEURAL NETWORK SYSTEM WITH REGULARIZATION 

We then extended our regularization work from the one-layer sigmoidal network system to 
a two-layer sigmoidal network system. The first layer of the network works as a feature 
extractor and is shared by all phonetic classes. Theoretically, in order to benefit from 
its larger capability of representing phonetic segments, the number of hidden units of a 
two-layer network should be much greater than the number of input dimensions. However, 
a large number of hidden units can cause serious overfitting problems when the number of 
training ~amples is less than the number of parameters for some context models. Therefore, 
regularization is more useful here. Because the second layer can be trained as a one-layer 
net, the regularization techniques we developed for a one-layer net can be applied here to 
train the second layer. 

In our implementation, a weighted least squares error measure was used at the output layer. 
First, the weights for the two-layer system were initialized with random numbers between 
-1 and 1. Fixing the weights for the second layer, we trained the first layer by using 
gradient descent; then fixing the weights for the first layer, we trained the second layer by 
linear least squares with a re gularization term, without the sigmoidal function at the output. 
We stopped after one iteration for our initial experiment. 

4 TRAINING SNN WITH PROJECTION PURSUIT 

4.1 WHY PROJECTION PURSUIT 

As we described in the previous section, regularization is especially useful in training the 
second layer of a two-layer network. In order to take advantage of the two-layer layer 
structure, we want to train the first layer as well. However, once the number of the hidden 
units is large, the number of weights in the first layer is huge, which makes the first layer 
very difficult to train. Projection pursuit presents a !lseful technique to use a large hidden 
layer but still keep the number of weights in the first layer as small as possible. 

The original pJojection PU13Uit is a nonparametric statistical technique to find interesting 
low dimensional projections of high dimensional data sets [7]. The parametric version of 
it, a projection pursuit learning network. (pPLN) has a structure very similar to a two-layer 
sigmoidal network network [7]. In a traditional two-layer neural network, the weights in 
the first layer can be viewed as hypetplanes in the input space. It has been proposed that 
a special function of the first layer is to partition the input space into cells through these 
hyperplanes [8]. The second layer groups these cells together to form decision regions. 
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The accuracy or resolution of the decision regions is completely specified by the size and 
density of the cells which is detennined by the number and placement of the first layer 
hyperplanes in the input space. 

In a two-layer neural net, since the weights in the first layer can go anywhere, there are no 
restrictions on the placement of these hyperplanes. In contrast, a projection pursuit learning 
network. restricts these hyperplanes in some major "interesting" directions. In other words, 
hidden units are grouped into several distinct directions. Of course, with this grouping, the 
number of cells in the input space is reduced somewhat. However, the interesting point 
here is that this resoiction does not reduce the number of cells asymptotically [7]. In other 
words, grouping hidden units does not affect the number of cells much. Consequently, for 
a fixed number of hidden units, the number of parameters in the first layer in a projection 
pursuit learning network. is much less than in a traditional neural network. Therefore, a 
projection pursuit learning network is easier to train and generalizes better. 

4.2 HOW TO TRAIN A PPLN 

In our implementation, the distinct projection directions were shared by all context­
dependent models, and they were trained context-independently. We then trained these 
direction parameters with back-propagation. The second layer was trained with regulariza­
tion. Iterations can go back and forth between the two layers. 

5 COMBINATIONS OF DIFFERENT MODELS 

In the last two sections, we talked about using regularization and projection pursuit to 
optimize our neural network system. In this section, we will discuss another optimization 
method, combining different models into a hybrid system. The combining method is based 
on the N-best rescoring paradigm [2]. 

The N-best rescoring paradigm is a mechanism that allows us to build a hybrid system by 
combining different knowledge sources. For example, in the RM corpus, we successfully 
combined the HMM: system, th~ SNN system and word-pair grammar into a single hybrid 
system which achieved the state-of-the-art. We have been using this N-best rescoring 
paradigm to combine different models in the WSJ corpus as well. These different models 
include SNN left context, right context, and diphone models, HMM models, and a language 
model known as statistical grammar. We will show how to obtain a reasonable combination 
of different systems from Bayes rule. 

The goal is to compute P(SIX), the probability of the sentence 5 given the observation 
sequence X. From Bayes rule, 

P(SIX)SNN = P(S)P(XIS) 
P(X) 

~ P(S) II P(xIS) 
P(x) 

x 

~ P(S) II P(xlp, c) 
P(x) 

x 

~ P(S) II P(Plx, c) 
P(plc) 

:r: 
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where X is a sequence of acoustic features x in each phonetic segment; p and c is the 
phoneme class and context for the segment, respectively. The following three approxima­
tions are used here: 

• P(XIS) = Ox P(xIS). 

• P(:z:IS) = P(:z:lp, c). 

• P(clx) = P(c). 

Therefol'e, in a SNN system, we use the following approximation from Bayes rule: 

P(SIX)N N ~ P(S) II P~~~;) 
x 

where 

P(S): Word grammar score. 

Ox P(plx, c): Neural net score. 

Ox P(plc): Phone grammar score. 

These three scores together with HMM scores are combined in the SNN/HMM hybrid 
system. 

6 EXPERIMENTAL RESULTS 

Development Set Nov92 Test 
HMM 11.0 8.5 
Baseline SNN 11. 7 
RegtIlarization and P!'ojection Pursuit SNN 11.2 9.1 
Baseline SNN/HMM 10.3 7.7 

~~~~~=-~~==~~~------~----------~~---Regularization and Projection Pursuit SNN/HMM 9.5 7.2 

Table 1: Word Error Rates for 5K, Bigram Grammar 

Development Set Nov93 Test 
14.4 14.0 

Regularization and Projection Pursuit SNN 14.6 
Regularization and Projection Pursuit SNN/HMM 13.0 12.3 

Table 2: Word Error Rates for 20K, Trigram Grammar 

Speaker-independent CSR tests were performed on the 5,000-word (5K) and 20,000-word 
(20K) ARPA Wall Street Journal corpus. Bigram and trigram statistical grammars were 
used. The basic neural network structure consists of 80 inputs, 500 hidden units and 46 
outputs. There are 125 projection directions in the first layer. Context models consist of 
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right context models and left diphone models. In the right context models, we used 46 
different networks to recognize each phoneme in each of the different right contexts. In 
the left diphone models, a segment input consisted of the first half segment of the current 
phone plus the second half segment of the previous phone. Word error rates are shown in 
Tables 1 and 2. 

Comparing the first two rows of Table 1 and Table 2, we can see that the two-layer neural 
network system alone is at the level of state-of-the-art HMM systems. Shown in Row 3 
and 5 of Table 1, regularization and projection pursuit improve the performance of neural 
net system. The hybrid SNN/HMM system reduces the word error rate 10%-15% over the 
HMM system in both tables. 

7 CONCLUSIONS 

Neural net te':hnology is useful in advancing the state-of-the-art in continuous speech recog­
nition system. Optimization methods, like regularization and projection pursuit, improve 
the performance of the neural net syst£:m. Our hybrid SNN/HMM system reduces the word 
error rate 10%-15% over the HMM system on 5,000-word and 20,000-word WSJ corpus. 
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