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Abstract 

Models of analog retrieval require a computationally cheap method of 
estimating similarity between a probe and the candidates in a large pool 
of memory items. The vector dot-product operation would be ideal for 
this purpose if it were possible to encode complex structures as vector 
representations in such a way that the superficial similarity of vector 
representations reflected underlying structural similarity. This paper de­
scribes how such an encoding is provided by Holographic Reduced Rep­
resentations (HRRs), which are a method for encoding nested relational 
structures as fixed-width distributed representations. The conditions un­
der which structural similarity is reflected in the dot-product rankings of 
HRRs are discussed. 

1 INTRODUCTION 

Gentner and Markman (1992) suggested that the ability to deal with analogy will be a 
"Watershed or Waterloo" for connectionist models. They identified "structural alignment" 
as the central aspect of analogy making. They noted the apparent ease with which people 
can perform structural alignment in a wide variety of tasks and were pessimistic about the 
prospects for the development of a distributed connectionist model that could be useful in 
performing structural alignment. 

In this paper I describe how Holographic Reduced Representations (HRRs) (Plate, 1991; 
Plate, 1994), a fixed-width distributed representation for nested structures, can be used 
to obtain fast estimates of analogical similarity. A HRR is a high dimensional vector, 
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and the vector dot-product of two HRRs is an efficiently computable estimate of the 
overall similarity between the two structures represented. This estimate reflects both 
surface similarity and some aspects of structural similarity, l even though alignments are 
not explicitly calculated. I also describe contextualization, an enrichment ofHRRs designed 
to make dot-product comparisons of HRRs more sensitive to structural similarity. 

2 STRUCTURAL ALIGNMENT & ANALOGICAL REMINDING 

People appear to perform structural alignment in a wide variety of tasks, including per­
ception, problem solving, and memory recall (Gentner and Markman, 1992; Markman, 
Gentner and Wisniewski, 1993). One task many researchers have investigated is analog 
recall. A subject is shown a number of stories and later is shown a probe story. The task 
is to recall stories that are similar to the probe story (and sometimes evaluate the degree of 
similarity and perform analogical reasoning). 

MACIFAC, a computer models of this process, has two stages(Gentner and Forbus, 1991). 
The first stage selects a few likely analogs from a large number of potential analogs. The 
second stage searches for an optimal (or at least good) mapping between each selected story 
and the probe story and outputs those with the best mappings. Two stages are necessary 
because it is too computationally expensive to search for an optimal mapping between the 
probe and all stories in memory. An important requirement for a first stage is that its 
performance scale well with both the size and number of episodes in long-term memory. 
This prevents the first stage of MACIFAC from considering any structural features. 

Large pool of items in memory Probe 

0000 
0 0 00 000 analogies 

3 00800 0 00 
0 0000 0 0 0 0 0 00 

000 00 0 00 o:J 0 0 0 0 Cheap filtering process 
o 0 ~ ~ 0 based on surface features 

Good 
analogies 

o 
o 

Expensive selection pro­
cess based on structural 
features 

Figure 1: General architecture of a two-stage retrieval model. 

While it is indisputable that people take structural correspondences into account when 
evaluating and using analogies (Gentner, Rattermann and Forbus, 1993), it is less certain 
whether structural similarity influences access to long term memory (i.e., the first-stage 
reminding process). Some studies have found little effect of analogical similarity on 
reminding (Gentner and Forbus, 1991; Gentner, Rattermann and Forbus, 1993), while 
others have found some effect (Wharton et aI., 1994). 

l"Surface features" of stories are the features of the entities and relations involved, and "structural 
features" are the relationships among the relations and entities. 
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In any case, surface features appear to influence the likelihood of a reminding far more than 
do structural features. Studies that have found an effect of structural similarity on reminding 
seem to indicate the effect only exists, or is greater, in the presence of surface similarity 
(Gentner and Forbus, 1991; Gentner, Rattermann and Forbus, 1993; Thagard et al., 1990). 

2.1 EXAMPLES OF ANALOGY BETWEEN NESTED STRUCTURES. 

To test how well the HRR dot-product works as an estimate of analogical similarity between 
nested relational structures I used the following set of simple episodes (see Plate (1993) 
for the full set). The memorized episodes are similar in different ways to the probe. These 
examples are adapted from (Thagard et al., 1990). 

Probe: Spot bit Jane, causing Jane to flee from Spot. 
Episodes in long-term memory: 
El (L8) Fido bit John, causing John to flee from Fido. 
E2 (ANcm) Fred bit Rover, causing Rover to flee from Fred. 
E3 (AN) Felix bit Mort, causing Mort to flee from Felix. 
E6 (88) John fled from Fido, causing Fido to bite John. 
E7 (FA) Mort bit Felix, causing Mort to flee from Felix. 

In these episodes Jane, John, and Fred are people, Spot, Fido and Rover are dogs, Felix is 
a cat, and Mort is a mouse. All of these are objects, represented by token vectors. Tokens 
of the same type are considered to be similar to each other, but not to tokens of other types. 
Bite, flee, and cause are relations. The argument structure of the cause relation, and the 
patterns in which objects fill multiple roles constitutes the higher-order structure. 

The second column classifies the relationship between each episode and the probe using 
Gentner et aI's types of similarity: LS (Literal Similarity) shares relations, object features, 
and higher-order structure; AN (Analogy, also called True Analogy) shares relations and 
higher-order structure, but not object features; SS (Surface Similarity, also called Mere 
Appearance) shares relations and object features, but not higher-order structure; FA (False 
Analogy) shares relations only. ANcm denotes a cross-mapped analogy - it involves the 
same types of objects as the probe, but the types of corresponding objects are swapped. 

2.2 MACIFAC PERFORMANCE ON TEST EXAMPLES 

The first stage of MACIFAC (the "Many Are Called" stage) only inspects object features 
and relations. It uses a vector representation of surface features. Each location in the vector 
corresponds to a surface feature of an object, relation or function, and the value in the 
location is the number of times the feature occurs in the structure. The first-stage estimate 
of the similarity between two structures is the dot-product of their feature-count vectors. A 
threshold is used to select likely analogies. It would give El (L8), E2 (ANcm), and E6 
(88) equal and highest scores, i.e., (L8, ANcm, 88) > (AN, FA) 

The Structure Mapping Engine (SME) (Falkenhainer, Forbus and Gentner, 1989) is used 
as the second stage of MACIFAC (the "Few Are Chosen" stage). The rules of SME are 
that mapped relations must match, all the arguments of mapped relations must be mapped 
consistently, and mapping of objects must be one-to-one. SME would detect structural 
correspondences between each episode and the probe and give the literally similar and 
analogous episodes the highest rankings, i.e., LS > AN > (SS, FA). 
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A simplified view of the overall similarity scores from MAC and the full MACIFAC is 
shown in Table 1. There are four conditions - the two structures being compared can be 
similar in structure and/or in object attributes. In all four conditions, the structures are 
assumed to involve similar relations - only structural and object attribute similarities are 
varied. Ideally, the responses to the mixed conditions should be flexible, and controlled by 
which aspects of similarity are currently considered important. Only the relative values of 
the scores are important, the absolute values do not matter. 

Structural Object Attribute Similarity Structural Object Attribute Similarity 
Similarity YES NO Similarity YES NO 

YES (LS) High (AN) Low YES (LS) High (AN) tMed-High 
NO (SS) High (FA) Low NO (SS) :J:Med-Low (FA) Low 

(a) Scores from MAC. (b) Ideal similarity scores. 

Table 1: (a) Scores from the fast (MAC) similarity estimator in MACIFAC. (b) Scores from 
an ideal structure-sensitive similarity estimator, e.g., SME as used in MACIFAC. 

In the remainder of this paper I describe how HRRs can be used to compute fast similarity 
estimates that are more like ratings in Table 1 b, i.e., estimates that are flexible and sensitive 
to structure. 

3 HOLOGRAPHIC REDUCED REPRESENTATIONS 

A distributed representation for nested relational structures requires a solution to the binding 
problem. The representation of a relation such as bite (spot, jane) ("Spot bit Jane.") 
must bind 'Spot' to the agent role and 'Jane' to the object role. In order to represent nested 
structures it must also be possible to bind a relation to a role, e.g., bite (spot, jane) and 
the antecedent role of the cause relation. 

n-l 

Zi = 2.:= XkYj-k 

k=O 

(Subscript are modulo-n) 

(a) (b) 

Zo = XoYo + X2Yl + XIY2 

Zl = XIYO + XOYI + X2Y2 

Z2 = X2YO + XIYl + XOY2 

Figure 2: (a) Circular convolution. (b) Circular convolution illustrated as a compressed 
outer product for n = 3. Each of the small circles represents an element of the outer product 
of x and Y, e.g., the middle bottom one is X2Yl. The elements of the circular convolution 
of x and yare the sums of the outer product elements along the wrapped diagonal lines. 

Holographic Reduced Representations (HRRs) (Plate, 1994) use circular convolution to 
solve the binding problem. Circular convolution (Figure 2a) is an operation that maps two 
n-dimensional vectors onto one n-dimensional vector. It can be viewed as a compressed 
outer product, as shown in Figure 2b. Algebraically, circular convolution behaves like 
multiplication - it is commutative, associative, and distributes over addition. Circular 
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convolution is similarity preserving: if ~ ~ ~' then ~ ® b ~ ~' ® b. Associations can be 
decoded using a stable approximate inverse: ~ * ® (~ ® b) ~ b (provided that the vector 
elements are normally distributed with mean zero and variance lin). The approximate 
inverse is a permutation of vector elements: ar = an-i. The dot-product of two vectors, 
a similarity measure, is: ~. b = L~:Ol aibi. High dimensional vectors (n in the low 
thousands) must be used to ensure reliable encoding and decoding. 

The HRR for bi te (spot, jane) is: F = < bite + biteagt ® spot + biteobj ® jane>, 
where < . > is a normalization operation « ~ >= ~I V!! . ~). Multiple associations are 
superimposed in one vector and the representations for the objects (spot and jane) can 
also be added into the HRR in order to make it similar to other HRRs involving Spot and 
Jane. The HRR for a relation is the same size as the representation for an object and can be 
used as the filler for a role in another relation. 

4 EXPT. 1: HRR DOT-PRODUCT SIMILARITY ESTIMATES 

Experiment 1 illustrates the ways in which the dot-products of ordinary HRRs reflect, and 
fail to reflect, the similarity of the underlying structure of the episodes. 

Base vectors Token vectors 
person, dog, cat, mouse 
bite, flee, cause 
biteagt, fleeagt, causeantc 
biteobj, flee from, causecnsq 

jane =< person + idjane > spot =< dog + idspot > 

john =< person + idjohn > fido =< dog + idfido > 
fred =< person + idfred > rover =< dog + idrover > 
mort =< mouse + idntort > felix =< cat + id felix> 

The set of base and tokens vectors used in Experiments 1, 2 and 3 is shown above. All base 
and id vectors had elements independently chosen from a zero-mean normal distribution 
with variance lin. The HRR for the probe is constructed as follows. and the HRRs for the 
other episodes are constructed in the same manner. 

Pbite =< bite + biteagt ® spot + biteobj ® jane> 
P flee =< flee + fleeagt ® jane + flee from ® spot> 
P objects =< jane + spot> 
P =< cause + P objects + Pbite + P flee + causeantc ® Pbite + causecnsq ® P flee> 

Experiment 1 was run 100 times, each time with a new choice of random base vectors. The 
vector dimension was 2048. The means and standard deviations of the HRR dot-products 
of the probe and each episode are shown in Table 2. 

Dot-product with probe 
Probe: Spot bit Jane. causing Jane to flee from Spot. Exptl Expt2 Expt3 
Episodes in long-term memory: Avg Sd 
El LS Fido bit John, causing John to flee from Fido. 0.70 0.016 0.63 0.81 
E2 ANCnt Fred bit Rover, causing Rover to flee from Fred. 0.47 0.022 0.47 0.69 
E3 AN Felix bit Mort, causing Mort to flee from Felix. 0.39 0.024 0.39 0.61 
E6 SS John fled from Fido, causing Fido to bite John. 0.47 0.018 0.44 0.53 
E7 FA Mort bit Felix, causing Mort to flee from Felix. 0.39 0.024 0.39 0.39 

Table 2: Results of Experiments 1,2 and 3. 

In 94 out of 100 runs, the ranking of the HRR dot-products was consistent with 

LS > (ANcm, SS) > (FA, AN) 
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(where the ordering within the parenthesis varies). The order violations are due to "random" 
fluctuations of dot-products, whose variance decreases as the vector dimension increases. 
When the experiment was rerun with vector dimension 4096 there was only one violation 
of this order out of 100 runs. 

These results represent an improvement over the first stage of MACIFAC - the HRR dot­
product distinguishes between literal and surface similarity. However, when the episodes 
do not share object attributes, the HRR dot-product is not affected by structural similarity 
and the scores do not distinguish analogy from false analogy or superficial similarity. 

5 EXPERIMENTS 2 AND 3: CONTEXTUALIZED HRRS 

Dot-product comparisons ofHRRs are not sensitive to structural similarity in the absence of 
similar objects. This is because the way in which objects fill multiple roles is not expressed 
as a surface feature in HRRs. Consequently, the analogous episodes E2 (ANcm) and E3 
(AN) do not receive higher scores than the non analogous episodes E6 (SS) and E7 (FA). 

We can force role structure to become a surface feature by "contextualizing" the represen­
tations of fillers. Contextualization involves incorporating information about what other 
roles an object fills in the representation of a filler. This is like thinking of Spot (in the 
probe) as an entity that bites (a biter) and an entity that is fled from (a "fled-from"). 

In ordinary HRRs the filler alone is convolved with the role. In contextualized HRRs a blend 
of the filler and its context is convolved with the role. The representation for the context of 
object in a role is the typical fillers of the other roles the object fills. The context for Spot in 
the flee relation is represented by typ~~; and the context in the bite relation is represented 

by typ~~eo:n (where typ~~; = bite ® bite~gt and typ~~:em = flee ® fleejrom). The 
degree of contextualization is governed by the mixing proportions ""0 (object) and ""c 
(context). The contextualized HRR for the probe is constructed as follows: 

Pbite =< bite + biteagt ® (X:ospot + X:ctyp~~:eTn) + biteobj ® (X:ojane + X:ctyp!~~e) > 
P flee =< flee + fleeagt ® (X:ojane + X:ctyp~tn + fleefroTn ® (X:ospot + X:ctyp~~n > 
P objects =< jane + spot> 
P =< cause + P objects + P bite + P flee + causeantc ® Pbite + causecnsq ® P flee> 

A useful similarity estimator must be flexible and able to adjust salience of different aspects 
of similarity according to context or command. The degree to which role-alignment affects 
the HRR dot-product can be adjusted by changing the degree of contextualization in just 
one episode of a pair. Hence, the items in memory can be encoded with a fixed ,.., values 
(,..,-: and ,..,;;-) and the salience of role alignment can be changed by altering the degree of 
contextualization in the probe (,..,~ and ,..,n. This is fortunate as it would be impractical to 
recode all items in memory in order to alter the salience of role alignment in a particular 
comparison. The same technique can be used to adjust the importance of other features. 

Two experiments were performed with contextualized HRRs, with the same episodes as 
used in Experiment 1. In Experiment 2 the probe was non-contextualized (,..,~ = 1, ,..,~ = 0), 
and in Experiment 3 the probe was contextualized (,..,~ = 1/~,,..,~ = 1/~). For both 
Experiments 2 and 3 the episodes in memory were encoded with the same degree of 
contextualization (,..,-: = 1/~,,..,;;- = 1/ ~). As before, each set of comparisons was run 
100 times, and the vector dimension was 2048. The results are shown in Table 2. 
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The scores in Experiment 2 (non-contextualized probe) were consistent (in 95 out of 100 
runs) with the same order as given for Experiment 1: 

L8 > (ANcm ,88) > (FA, AN) 

The scores in Experiment 3 (contextualized probe) were consistent (in all 100 runs) with an 
ordering that ranks analogous episodes as strictly more similar than non-analogous ones: 

L8 > ANcm > AN > 88 > FA 

6 DISCUSSION 

The dot-product of HRRs provides a fast estimate of the degree of analogical match and 
is sensitive to various structural aspects of the match. It is not intended to be a model 
of complex or creative analogy making, but it could be a useful first stage in a model of 
analogical reminding. 

Structural Object Attribute Similarity Structural Object Attribute Similarity 
Similarity YES NO Similarity YES NO 

YES (LS) High (AN) Low YES (LS) High (AN) tMed-High 
NO (SS) Med (FA) Low NO (SS) tMed-Low (FA) Low 

(a) Ordinary-HRR dot-products. (b) Contextualized-HRR dot-products. 

Table 3: Similarity scores from ordinary and contextualized HRR dot-product comparisons. 
The flexibility comes adjusting the weights of various components in the probe. 

The dot-product of ordinary HRRs is sensitive to some aspects of structural similarity. It 
improves on the existing fast similarity matcher in MACIFAC in that it discriminates the 
first column of Table 3 - it ranks literally similar (LS) episodes higher than superficially 
similar (88) episodes. However, it is insensitive to structural similarity when corresponding 
objects are not similar. Consequently, it ranks both analogies (AN) and false analogies (FA) 
lower than superficially similar (S8) episodes. 

The dot-product of contextualized HRRs is sensitive to structural similarity even when 
corresponding objects are not similar. It ranks the given examples in the same order as 
would the full MACIFAC or ARCS system. 

Contextualization does not cause all relational structure to be expressed as surface features 
in the HRR vector. It only suffices to distinguish analogous from non-analogous structures 
when no two entities fill the same set of roles. Sometimes, the distinguishing context for 
an object is more than the other roles that the object fills. Consider the situation where 
two boys are bitten by two dogs, and each flees from the dog that did not bite him. With 
contextualization as described above it is impossible to distinguish this from the situation 
where each boy flees from the dog that did bite him. 

HRR dot-products are flexible - the salience of various aspects of similarity can be adjusted 
by changing the weights of various components in the probe. This is true for both ordinary 
and contextualized HRRs. 

HRRs retain many of the advantages of ordinary distributed representations: (a) There is a 
simple and computationally efficient measure of similarity between two representations -
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the vector dot-product. Similar items can be represented by similar vectors. (b) Items are 
represented in a continuous space. ( c) Information is distributed and redundant. 

Hummel and Biederman (1992) discussed the binding problem and identified two main 
problems faced by conjunctive coding approaches such as Tensor Products (Smolensky, 
1990). These are exponential growth of the size of the representation with the number 
of associated objects (or attributes), and insensitivity to attribute structure. HRRs have 
much in common with conjunctive coding approaches (they can be viewed as a compressed 
conjunctive code), but do not suffer from these problems. The size of HRRs remains 
constant with increasing numbers of associated objects, and sensitivity to attribute structure 
has been demonstrated in this paper. 

The HRR dot-product is not without its drawbacks. Firstly, examples for which it will 
produce counter-intuitive rankings can be constructed. Secondly, the scaling with the size 
of episodes could be a problem - the sum of structural-feature matches becomes a less 
appropriate measure of similarity as the episodes get larger. A possible solution to this 
problem is to construct a spreading activation network of HRRs in which each episode is 
represented as a number of chunks, and each chunk is represented by a node in the network. 

The software used for the HRR calculations is available from the author. 
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