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Abstract 

Stochastic optimization algorithms typically use learning rate 
schedules that behave asymptotically as J.t(t) = J.to/t. The ensem­
ble dynamics (Leen and Moody, 1993) for such algorithms provides 
an easy path to results on mean squared weight error and asymp­
totic normality. We apply this approach to stochastic gradient 
algorithms with momentum. We show that at late times, learning 
is governed by an effective learning rate J.tejJ = J.to/(l - f3) where 
f3 is the momentum parameter. We describe the behavior of the 
asymptotic weight error and give conditions on J.tejJ that insure 
optimal convergence speed. Finally, we use the results to develop 
an adaptive form of momentum that achieves optimal convergence 
speed independent of J.to. 

1 Introduction 

The rate of convergence for gradient descent algorithms, both batch and stochastic, 
can be improved by including in the weight update a "momentum" term propor­
tional to the previous weight update. Several authors (Tugay and Tanik, 1989; 
Shynk and Roy, 1988) give conditions for convergence of the mean and covariance 
of the weight vector for momentum LMS with constant learning rate. However 
stochastic algorithms require that the learning rate decay over time in order to 
achieve true convergence of the weight (in probability, in mean square, or with 
probability one). 
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This paper uses our previous work on weight space probabilities (Leen and Moody, 
1993; Orr and Leen, 1993) to study the convergence of stochastic gradient algo­
rithms with annealed learning rates of the form Jl = Jlo/t, both with and without 
momentum. The approach provides simple derivations of previously known results 
and their extension to stochastic descent with momentum. Specifically, we show 
that the mean squared weight misadjustment drops off at the maximal rate ex 1/ t 
only if the effective learning rate JlejJ = Jlo/(1 - (3) is greater than a critical value 
which is determined by the Hessian. 

These results suggest a new algorithm that automatically adjusts the momentum 
coefficient to achieve the optimal convergence rate. This algorithm is simpler than 
previous approaches that either estimate the curvature directly during the descent 
(Venter, 1967) or measure an auxilliary statistic not directly involved in the opti­
mization (Darken and Moody, 1992). 

2 Density Evolution and Asymptotics 

We consider stochastic optimization algorithms with weight w E RN. We confine 
attention to a neighborhood of a local optimum w* and express the dynamics in 
terms of the weight error v = w - w*. For simplicity we treat the continuous time 
algorithm 1 

d~~t) = Jl(t) H[ v(t), x(t)] (1) 

where Jl(t) is the learning rate at time t, H is the weight update function and 
x(t) is the data fed to the algorithm at time t. For stochastic gradient algorithms 
H = - \7 v £(v, x(t)), minus the gradient of the instantaneous cost function. 

Convergence (in mean square) to w* is characterized by the average squared norm 
of the weight error E [ 1 V 12] = Trace C where 

C - J dNv vvT P(v,t) (2) 

is the weight error correlation matrix and P(v, t) is the probability density at v and 
time t. In (Leen and Moody, 1993) we show that the probability density evolves 
according to the Kramers-Moyal expansion 
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1 Although algorithms are executed in discrete time, continuous time formulations are 
often advantagous for analysis. The passage from discrete to continuous time is treated 
in various ways depending on the needs of the theoretical exposition. Kushner and Clark 
(1978) define continous time functions that interpolate the discrete time process in order 
to establish an equivalence between the asymptotic behavior of the discrete time stochastic 
process, and solutions of an associated deterministic differential equation. Heskes et ai. 
(1992) draws on the results of Bedeaux et ai. (1971) that link (discrete time) random 
walk trajectories to the solution of a (continuous time) master equation. Heskes' master 
equation is equivalent to our Kramers-Moyal expansion (3). 
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where H j " denotes the jlh component of the N-component vector H, and ( .. ')x 
denotes averaging over the density of inputs. Differentiating (2) with respect to 
time, u~ing (3) and integrating by parts, we obtain the equation of motion for the 
weight error correlation 

dd~ J-L(t) J dN V P(v, t) [v (H(v, xf)x + (H(v, x))x vTJ + 

J-L(t)2 J dN V P(v, t) (H(v, x) H(v, x)T)x (4) 

2.1 Asymptotics of the Weight Error Correlation 

Convergence of v can be understood by studying the late time behavior of (4). 
Since the update function H(v, x) is in general non-linear in v, the time evolution 
of the correlation matrix Cij is coupled to higher moments E [Vi Vj Vk ••• ] of the 
weight error. However, the learning rate is assumed to follow a schedule J-L(t) that 
satisfies the requirements for convergence in mean square to a local optimum. Thus 
at late times the density becomes sharply peaked about v = 02 . This suggests 
that we expand H(v, x) in a power series about v = 0 and retain the lowest order 
non-trivial terms in (4) leaving: 

dC dt = - J-L(t) [ (R C) + (C RT) ] + J-L(t)2 D , (5) 

where R is the Hessian of the average cost function (E) x' and 

D = (H(O,x)H(O,xf)x (6) 

is the diffusion matrix, both evaluated at the local optimum w*. (Note that RT = 
R.) We use (5) with the understanding that it is valid for large t. The solution to 
(5) is 

C(t) = U(t,to)C(to)UT(t,to) + t d7 J-L(7)2 U(t,7) D UT(t,7) (7) ito 
where the evolution operator U(t2' td is 

U(t2, t1) = exp [ -R 1:' dr tt(r) ] (8) 

We assume, without loss of generality, that the coordinates are chosen so that R is 
diagonal (D won't be) with eigenvalues Ai, i = 1 ... N. Then with J-L(t) = J-Lo/t we 
obtain 

E[lvI 2] = Trace [C(t)] 
N { ( ttO ) 21-1-0 Ai t; Cii (to) 

[ 1 1 (to) 21-1-0 A, 1 } - - - . (9) 
t to t 

2In general the density will have nonzero components outside the basin of w* . We are 
neglecting these, for the purpose of calculating the second moment of the the local density 
in the vicinity of w*. 
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We define 
1 

J.lerit == ---
2 Amin 

(10) 

and identify two regimes for which the behavior of (9) is fundamentally different: 

1. J.lo > J.lcri( E [lvI 2 ] drops off asymptotically as lit. 

2. J.lo < J.lerit: E [lvI 2 ] drops off asymptotically as ( t ) (2 ~o ATnin ) 

i.e. more slowly than lit. 

Figure 1 shows results from simulations of an ensemble of 2000 networks trained by 
LMS, and the prediction from (9). For the simulations, input data were drawn from 
a gaussian with zero mean and variance R = 1.0. The targets were generated by 
a noisy teacher neuron (i.e. targets =w*x +~, where (~) = 0 and (e) = (72). The 
upper two curves in each plot (dotted) depict the behavior for J.lo < J.lerit = 0.5. 
The remaining curves (solid) show the behavior for J.lo > J.lerit. 
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Fig.1: LEFT - Simulation results from an ensemble of 2000 one-dimensional 
LMS algorithms with R = 1.0, (72 = 1.0 and /-L = /-Lo/t. RIGHT - Theo­
retical predictions from equation (9). Curves correspond to (top to bottom) 
/-Lo = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5 . 

By minimizing the coefficient of lit in (9), the optimal learning rate is found to 
be J.lopt = 11 Amin. This formalism also yields asymptotic normality rather simply 
(Orr and Leen, 1994). These conditions for "optimal" (Le. lit) convergence of 
the weight error correlation and the related results on asymptotic normality have 
been previously discussed in the stochastic approximation literature (Darken and 
Moody, 1992; Goldstein, 1987; White, 1989; and references therein) . The present 
formal structure provides the results with relative ease and facilitates the extension 
to stochastic gradient descent with momentum. 

3 Stochastic Search with Constant Momentum 

The discrete time algorithm for stochastic optimization with momentum is: 

v(t + 1) = v(t) + J.l(t) H[v(t), x(t)] + f3 f!(t) (11) 
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n(t + 1) v(t + 1) - v(t) 
n(t) + /1(t) H[v(t), x(t)] + ((3 - 1) n(t), (12) 

or in continuous time, 

dv(t) 
/1(t) H[v(t), x(t)] + (3 n(t) (13) 

dt 

dn(t) 
/1(t) H[v(t), x(t)] + ((3 - 1) n(t). (14) 

dt 
-

As before, we are interested in the late time behavior of E [lvI 2 ]. To this end, we 
define the 2N-dimensional variable Z = (v, nf and, following the arguments of 
the previous sections, expand H[v(t), x(t)] in a power series about v = 0 retaining 
the lowest order non-trivial terms. In this approximation the correlation matrix 
C _ E[ZZT] evolves according to 

with 

dC - - T 2-dt = KC + CK + /1(t) D (15) 

(16) 

I is the N x N identity matrix, and Rand D are defined as before. The evolution 
operator is now 

U(t2' ttl = exp [t' dr K(r)] (17) 

and the solution to (15) is 

C = U(t, to) C(to) U T (t, to) + t dr /12 (r) U(t, r) D U T (t, r) (18) 
ltD 

The squared norm of the weight error is the sum of first N diagonal elements of C. 
In coordinates for which R is diagonal and with /1(t) = /10 It, we find that for t » to 

E[lvI2] '" t, {c,,(to) (t;) 'i~~' + 

This reduces to (9) when (3 = O. Equation (19) defines two regimes of interest: 

1. /10/(1 - (3) > /1cri( E[lvI2] drops off asymptotically as lit. 
2. /10/(1 - (3) < /1cri( E[lvI2] drops off asymptotically as 

21-'Q'xmjn 

(~) 1 ~ 

I.e. more slowly than lit. 
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The form of (19) and the conditions following it show that the asymptotics of 
gradient descent with momentum are governed by the effective learning rate 

_ M 
MejJ = 1 - {3 . 

Figure 2 compares simulations with the predictions of (19) for fixed Mo and various 
{3. The simulations were performed on an ensemble of 2000 networks trained by 
LMS as described previously but with an additional momentum term of the form 
given in (11). The upper three curves (dotted) show the behavior of E[lvI 2] for 
MejJ < Merit· The solid curves show the behavior for MejJ > Merit· 

The derivation of asymptotic normality proceeds similarly to the case without mo­
mentum. Again the reader is referred to (Orr and Leen, 1994) for details . 
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Fig.2: LEFT - Simulation results from an ensemble of 2000 one-dimensional LMS al­
gorithms with mome~tum with R = 1.0, (12 = 1.0, and /10 - 0.2. RIGHT­
Theoretical predictions from equation (19). Curves correspond to (top to bottom) 
{3 = 0.0, 004, 0.5, 0.6, 0.7, 0.8 . 

4 Adaptive Momentum Insures Optimal Convergence 

The optimal constant momentum parameter is obtained by minimizing the coeffi­
cient of lit in (19). Imposing the restriction that this parameter is positive3 gives 

(3opt = max(O, 1 - MOAmin). (20) 

As with Mopt, this result is not of practical use because, in general, Amin is unknown. 

For I-dimensional linear networks, an alternative is to use the instantaneous esti­
mate of A, :\(t) = x 2(t) where x(t) is the network input at time t. We thus define 
the adaptive momentum parameter to be 

(3adapt = max(O, 1 - MOX 2 ) (I-dimension). (21) 

An algorithm based on (21) insures that the late time convergence is optimally fast. 
An alternative route to achieving the same goal is to dispense with the momentum 
term and adaptively adjust the learning rate. Vetner (1967) proposed an algorithm 

3 E[lvI 2 ] diverges for 1{31 > 1. For -1 < {3 < 0, E[lvI 2 ] appears to converge but oscil­
lations are observed. Additional study is required to determine whether {3 in this range 
might be useful for improving learning. 
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that iteratively estimates A for 1-D algorithms and uses the estimate to adjust J.Lo. 
Darken and Moody (1992) propose measuring an auxiliary statistic they call "drift" 
that is used to determine whether or not J.Lo > J.Lcrit. The adaptive momentum 
scheme generalizes to multiple dimensions more easily than Vetner's algorithm, 
and, unlike Darken and Moody's scheme, does not involve calculating an auxiliary 
statistic not directly involved with the minimization. 

A natural extension to N dimensions is to define a matrix of momentum coefficients, 
'Y = I - J.Lo X xT, where I is the N x N identity matrix. By zeroing out the negative 
eigenvalues of 'Y, we obtain the adaptive momentum matrix 

(3adapt = I - ex xT, where e = min(J.Lo, 1/(xT x)). (22) 

=1.5 

-1+_~_--::=====-_~~~ L 1 2 3 °9(t) 

Fig.3: Simulations of 2-D LMS with 1000 networks initialized at Vo = (.2, .3) and with 
(72 = 1, ).1 = .4, ).2 = 4, and /-Lcrit = 1.25. LEFT- {3 = 0, RIGHT - {3 = (3adapt. Dashed 
curves correspond to adaptive momentum. 

Figure 3 shows that our adaptive momentum not only achieves the optimal con­
vergence rate independent of the learning rate parameter J.Lo but that the value of 
log(E[lvI2]) at late times is nearly independent of J.Lo and smaller than when mo­
mentum is not used. The left graph displays simulation results without momentum. 
Here, convergence rates clearly depend on J.Lo and are optimal for J.Lo > J.Lcrit = 1.25. 
When J.Lo is large there is initially significant spreading in v so that the increased 
convergence rate does not result in lower log(E[lvI2]) until very late times (t ~ 105 ). 

The graph on the right shows simulations with adaptive momentum. Initially, the 
spreading is even greater than with no momentum, but log(E[lvI2]) quickly decreases 
to reach a much smaller value. In addition, for t ~ 300, the optimal convergence 
rate (slope=-l) is achieved for all three values of J.Lo and the curves themselves lie 
almost on top of one another. In other words, at late times (t ;::: 300), the value of 
log(E[lvI2]) is independent of J.Lo when adaptive momentum is used. 

5 Summary 

We have used the dynamics of the weight space probabilities to derive the asymp­
totic behavior of the weight error correlation for annealed stochastic gradient algo­
rithms with momentum. The late time behavior is governed by the effective learning 
rate J.Lejj = J.Lo/(l - (3) . For learning rate schedules J.Lolt, if J.Leff > 1/(2 Arnin) , then 
the squared norm of the weight error v - w - w* falls off as lit. From these results 
we have developed a form of momentum that adapts to obtain optimal convergence 
rates independent of the learning rate parameter. 
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