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Abstract 

We show that a randomly selected N-tuple x of points ofRn with 
probability> 0 is such that any multi-layer percept ron with the 
first hidden layer composed of hi threshold logic units can imple-

ment exactly 2 2:~~~ ( Nil) different dichotomies of x. If N > hin 

then such a perceptron must have all units of the first hidden layer 
fully connected to inputs. This implies the maximal capacities (in 
the sense of Cover) of 2n input patterns per hidden unit and 2 input 
patterns per synaptic weight of such networks (both capacities are 
achieved by networks with single hidden layer and are the same as 
for a single neuron). Comparing these results with recent estimates 
of VC-dimension we find that in contrast to the single neuron case, 
for sufficiently large nand hl, the VC-dimension exceeds Cover's 
capacity. 

1 Introduction 

In the course of theoretical justification of many of the claims made about neural 
networks regarding their ability to learn a set of patterns and their ability to gen­
eralise, various concepts of maximal storage capacity were developed. In particular 
Cover's capacity [4] and VC-dimension [12] are two expressions of this notion and 
are of special interest here. We should stress that both capacities are not easy 
to compute and are presen tly known in a few particular cases of feedforward net­
works only. VC-dimension, in spite of being introduced much later, has been far 
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more researched, perhaps due to its significance expressed by a well known relation 
between generalisation and learning errors [12, 3]. Another reason why Cover's ca­
pacity gains less attention, perhaps, is that for the single neuron case it is twice 
higher than VC-dimension. Thus if one would hypothesise a similar relation to be 
true for other feedforward networks, he would judge Cover's capacity to be quite 
an unattractive parameter for generalisation estimates, where VC-dimension is be­
lieved to be unrealistically big. One of the aims of this paper is to show that this 
last hypothesis is not true, at least for some feedforward networks with sufficiently 
large number of hidden units. In the following we will always consider multilayer 
perceptrons with n continuously-valued inputs, a single binary output, and one or 
more hidden layers, the first of which is made up of threshold logic units only. 

The derivation of Cover's capacity for a single neuron in [4] is based on the so-called 
Function Counting Theorem, proved for the linear function in the sixties (c.f. [4]), 
which states that for an N -tuple i of points in general position one can implement 

C( N, n) deC 2 2::~=o (Nil) different dichotomies of i. Extension of this result to the 

multilayer case is still an open problem (c.f. T. Cover's address at NIPS'92). One of 
the complications arising there is that in contrast to the single neuron case even for 
perceptrons with two hidden units the number of implementable dichotomies may 
be different for different N -tuples in general position [8]. Our first main result states 
that this dependence on i is relatively weak, that for a multilayer perceptron the 
number of implementable dichotomies (counting function) is constant on each of a 
finite number of connected components into which the space of N-tuples in general 
position can be decomposed. Then we show that for one of these components 
C(N, nh1 ) different dichotomies can be implemented, where hl is the number of 
hidden units in the first hidden layer (all assumed to be linear threshold logic 
units). This leads to an upper bound on Cover's capacity of 2n input patterns per 
(hidden) neuron and 2 patterns per adjustable synaptic weight, the same as for a 
single neuron. Comparing this result with a recent lower bound on VC-dimension 
of multilayer perceptrons [10] we find that for for sufficiently large nand hl the 
VC-dimension is higher than Cover's capacity (by a factor log2(h1 )). 

The paper extends some results announced in [5] and is an abbreviated version of 
a forthcoming paper [6J. 

2 Results 

2.1 Standing assumptions and basic notation 

We recall that in this paper a multilayer perceptron means a layered feedforward 
network with one or more hidden layers, and the first hidden layer built exclusively 
from threshold logic units. 

A dichotomy of an N-tuple i = (Xl, ... , XN) E (Rn)N is a function 6: {Xl, ... , XN} -
{0,1}. For a multilayer perceptron F : Rn - {O,l} let i ~ CF(i) denote the 
number of different dichotomies of i which can be implemented for all possible 
selections of synaptic weights and biases. We shail call CF(i) a counting function 
following the terminology used in [4]. 
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Example 1. C¢(x) = C(N, n) def 2 :E?=o (Nil) for a single threshold logic unit 

¢ : R n -+ {O, 1} [4]. 0 

Points of an N-tuple x E (Rn)N are said to be in general po&ition if there does not 

exist an 1 ~r min(N, n - l)-dimensional affine hyperplane in R n containing (l + 2) 
of them. We use a symbol gP(n, N) C (Rn)N to denote that set of all N-tuples x 
in general position. 

Throughout this paper we assume to be given a probability measure dlJ def f dx on 
Rn such that the density f : Rn -+ R is a continuous function. 

2.2 Counting function is locally constant 

We start with a basic characterisations of the subset gP(n, N) C (Rn)N. 

Theorem 1 (i) gP(n, N) is an open and dense subset of (Rn)N with a finite 
number of connected components. 

(ii) Any of these components is unbounded, has an infinite Lebesgue measure and 
has a positive probability measure. 

Proof outline. (i) The key point to observe is that gP(n, N) = {x : p(x) =I- O}, 
where p : (Rn)N -+ R is a polynomial on (Rn)N. This implies immediately that 
gP( n, N) is open and dense in (R n)N. The finite number of connected components 
follows from the results of Milnor [7] (c.f. [2]). 

(ii) This follows from an observation that each of the connected components Ci has 
the property that if (Xl, ... , XN) E Ci and a > 0, then (ax!, ... ,axN) E C,. 0 

As Example 1 shows, for a single neuron the counting function is constant on 
gP(n, N). However, this may not be the case even for perceptrons with two hidden 
units and two inputs (c.f. [8, 6] for such examples and Corollary 8). Our first main 
result states that this dependence on x is relatively weak. 

Theorem 2 CF(X) is constant on connected components ofgP(n, N). 

Proof outline. The basic heuristic behind the proof of this theorem is quite simple. 
If we have an N-tuple x E (Rn)N which is split into two parts by a hyperplane, 
then this split is preserved for any sufficiently small perturbation Y E (R n)N of x, 
and vice versa, any split of y corresponds to a split of X. The crux is to show that 
if x is in general position, then a minute perturbation y of x cannot allow a bigger 
number of splits than is possible for x. We refer to [6] for details. 0 

The following corollary outlines the main impact of Theorem 2 on the rest of the 
paper. It reduces the problem of investigation of the function CF(X) on gP(n, N) to 
a consideration of a set of individual, special cases of N-tuples which, in particular, 
are amenable to be solved analytically. 

Corollary 3 If x E gP(n, N), then CF(X) = CF(f) for a randomly &elected N­
tuple f E (Rn)N with a probability> O. 
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2.3 A case of special component of gP( n, N) 

The following theorem is the crux of the paper. 

Theorem 4 There exists a connected component CC C gP( n , N) C (R n)N such 
that 

h1n (N - 1) 
CF(i) = C(N, nh1 ) = 2 t; i (for i E CC) 

with equality iff the input and first hidden layer are fully connected. The synaptic 
weights to units not in the first hidden layer can be constant. 

U sing now Corollary 3 we obtain: 

Corollary 5 CF(i) = C(N, nh1) for i E (Rn)N with a probability> O. 

The component CC C gP(n, N) in Theorem 4 is defined as the connected compo­
nent containing 

(1) 

where c : R __ R n is the curve defined as c(t) de! (t, t 2, ... ,tn) for t E Rand 
o < tt < t2 < ... < tN are some numbers (this example has been considered 
previously in [11]). The essential part of the proof of Theorem 4 is showing the 
basic properties of the N-tuple PN which will be described by the Lemma below. 

Any dichotomy h of the N-tuple fiN (c.f. 1) is uniquely defined by its value at C(tl) 
(2 options) and the set of indices 1 :s; il < i2 < ... < ile < N of all transitional 
pairs (C(ti;), C(ti;+I)), i.e. all indices i j such that h(C(ti;)) =f: h(C(ti;+I)), where j = 
1, "'1 k, (additional (N;l) options). Thus it is easily seen that there exist altogether 

2 (N;I) different dichotomies of PN for any given number k of transitional pairs, 

where 0 5 k < N. 

Lemma 6 Given integers n, N, h > 0, k ~ 0 and a dichotomy h of PN with k 
transitional pairs. 

(i) If k 5 nh, then there exist hyperplanes H(Wi,bi)' (Wi, bd E Rn x R, such that 

.(pj) = 9 (bo + t,.,9(W'. P; + b,») , (2) 

(3) 

for i = 1, ... , hand j = 1, "', N; here Vi de! 1 ifn is even and Vi del (_l)i ifn is odd, 

bo de! -0.5 if n is odd, h is even and h(po) = 1, and bo de! 0.5, otherwise. 

(ii) If k = nh, then Wij =f: 0 for j = 1, ... , nand i = 1, "'1 h, where Wi = 
(Will Wi2, ... ,Win)' 

(iii) If k > nh, then (2) and (3) cannot be satisfied. 

The proof of Lemma 6 relies on usage of the Vandermonde determinant and its 
derivatives. It is quite technical and thus not included here (c.f. [6] for details). 
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Theorem 7 
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Figure 1: Some estimates of capacity. 

3 Discussion 

3.1 An upper bound on Cover's capacity 

The Cover's capacity (or just capacity) of a neural network F : R n -+ {O,1}, 
G ap( F), is defined as the maximal N such that for a randomly selected N -tuple 
i = (Xl, ... ,XN) E (Rn)N of points of Rn, the network can implement 1/2 of all 
dichotomies of x with probability 1 [4, 8]. 

Corollary 5 implies that Gap(F) is not greater than maximal N such that 

Gp(PN )/2N = G(N, nhl) ~ 1/2. (4) 

since any property which holds with probability 1 on (Rn)N must also hold prob­
ability 1 on GG (c.f Theorem 4). The left-hand-side of the above equation is just 
the sum of the binomial expansion of (1/2 + 1/2)N-l up to hln-th term, so, using 
the symmetry argument, we find that it is ~ 1/2 if and only if it has at least half 
of the all terms, i.e. when N - 1 + 1 ::; 2(hln + 1). Thus the 2(hln + 1) is the 
maximal value of N satisfying (4). 1 Now let us recall that a multilayer perceptron 
as in this paper can implement any dichotomy of any N-tuple x in general position 
if N < nhl + 1 [I, 11]. This leads to the following result: 

Theorem 7 
nhl + 1 ~ Gap(F) ::; 2(nhl + 1). 

lNote that for large N the choice of cutoff value 1/2 is not critical, since the probability 
of a dichotomy being implementable drops rapidly as hi n a.pproa.ches 2N /2. 
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Figure 2: Comparison of estimates of the ratios of Cover's capacity per synaptic 
weight (Cap(F)/#w) and VC-dimension per synaptic weight (dvc(F)/#w). (Note 
that the upper bound for VC-dimension has so far been proved for low number of 
hidden layers [9,10].) 

for any multilayer perceptron F : R n -+ {O, I} with the first hidden layer built from 
the hi threshold logic units. For the most efficient networks in this class, with a 
single hidden layer, we thus obtain the following result: 

1 - O(I/nhl) ::; Cap(F)/#w ::; 2, 

where #w denotes the number of synaptk weights and biases. 

3.2 A relation to VC-dimension 

The VC-dimension, dvc(F), is defined as the largest N such that there exists an 
N-tuple i = (Xl, ... ,XN) E (Rn)N for which the network can implement all possible 
2N dichotomies. Recent results of Sakurai [10] imply 

(5) 

For sufficiently large nand hl this estimate exceeds 2(nhl + 1) which is an upper 
bound on Cap(F). Thus, in contrast to the single threshold logic unit case we have 
the following (c.f. Fig. 3): 

Corollary 8 Cap(F) < dvc(F) if hi » 1. 

3.3 Memorisation ability of multilayer perceptron 

Corollary 8 combined with Theorem 7 and Figure 2 imply that for some cases of 
patters in general position multilayer perceptron can memorise and reliably retrieve 
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(even with 100% accuracy) much more (~ log2(h1 ) times more) than 2 patterns 
per connection, as is the case for a single neuron [4]. This proves that co-operation 
between hidden units can significantly improve the storage efficiency of neural net­
works. 

3.4 A relation to PAC learning 

Vapnik's estimate of generalisation error [12] (an error rate on independent test set) 

EG(F) ~ EL(F) + D(N, dvc(F), EL, '1) (6) 

holds for N > dvc(F) with probability larger that (1 - '1). It contains two terms: 
(i) learning error E L( F) and (ii) confidence interval 

D(p, dvc, EL, '1) del 2W(p, dvc, '1) [1 + ,,11 + EL!W(p, dvc, '1)] , 

where 
2N dvc In '1 

w(N, dvc, 11) = (In dvc + 1) 2N - N· 

The ability of obtaining small learning error EL(F) is, in a sense, controlled by 
Cap(F), while the size of the confidence interval D is controlled by both dvc(F) 
and Cap(F) (through EL(F)). For a multilayer perceptron as in Theorem 7 when 
dvc(F) » Cap(F) (Fig. 2) it can turn out that actually the capacity rather than 
the VC-dimension is the most critical factor in obtaining low generalisation error 
EG(F). This obviously warrants further research into the relation between capacity 
and generalisation. 

The theoretical estimates of generalisation error based on VC-dimension are believed 
to be too pessimistic in comparison with some experiments. One may hypothesise 
that this is caused by too high values of dvc(F) used in estimates such as (6). Since 
Cover's capacity in the case multilayer perceptron with hl » 1 turned up to be 
much lower than VC-dimension, one may hope that more realistic estimates could 
be achieved with generalisation estimates linked directly to capacity. This subject 
will obviously require further research. Note that some results along these lines can 
be found in Cover's paper [4]. 

3.5 Some open problems 

Theorem 7 gives estimates of capacity per variable connection for a network with 
the minimal number of neurons in the first hidden layer showing that these neurons 
have to be fully connected. The natural question arises at this point as to whether 
a network with a bigger number but not fully connected neurons in the first hidden 
layer can achieve a better capacity (per adjustable synaptic weight). 

The values of the counting function i f-t Cp(i) are provided in this paper for the 
particular class of points in general position, for i E CC C (Rn)N. The natural 
question is whether they may be by chance a lower or upper bound for the counting 
function for the general case of i E (Rn)N ? The results of Sakurai [11] seem 
to point to the former case: in his case, the sequences PN = (p!, ... , PN) turned 
out to be "the hardest" in terms of hidden units required to implement 100% of 
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dichotomies. Corollary 8 and Figure 1 also support this lower bound hypothesis. 
They imply in particular that there exists a N'-tuple Y = (Yl, Yl, ... , YN') E (Rfl.)N', 

where N' deC VC-dimension > N, such that CF(Y) = 2N' » 2N > CF(PN) for 
sufficiently large nand h. 
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