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Abstract 

We prove that except possibly for small exceptional sets, discrete­
time analog neural nets are globally observable, i.e. all their cor­
rupted pseudo-orbits on computer simulations actually reflect the 
true dynamical behavior of the network. Locally finite discrete 
(boolean) neural networks are observable without exception. 

1 INTRODUCTION 

We address some aspects of the general problem of implementation and robustness 
of (mainly recurrent) autonomous discrete-time neural networks with continuous 
activation (herein referred to as analog networks) and discrete activation (herein, 
boolean networks). There are three main sources of perturbations from ideal oper­
ation in a neural network. First, the network's parameters may have been contam­
inated with noise from external sources. Second, the network is being implemented 
in optics or electronics (digital or analog) and inherent measurement limitations 
preclude the use of perfect information on the network's parameters. Third, as has 
been the most common practice so far, neural networks are simulated or imple­
mented on a digital device, with the consequent limitations on precision to which 
net parameters can be represented. Finally, for these or other reasons, the activation 
functions (e.g. sigmoids) of the network are not known precisely or cannot be evalu­
ated properly. Although perhaps negligible in a single iteration, these perturbations 
are likely to accumulate under iteration, even in feedforward nets. Eventually, they 
may, in fact, distort the results of the implementation to the point of making the 
simulation useless, if not misleading. 
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There is, therefore, an important difference between the intended operation of an 
idealized neural network and its observable behavior. This is a classical problem in 
systems theory and it has been addressed in several ways. First, the classical no­
tions of distinguishability and observability in control theory (Sontag, 1990) which 
roughly state that every pair of system's states are distinguishable by different out­
puts over evolution in finite time. This is thus a notion of local state observability. 
More recently, several results have established more global notions of identifiabil­
ity of discrete-time feedfoward (Sussmann, 1992; Chen, Lu, Hecht-Nelson, 1993) 
and continuous-time recurrent neural nets (Albertini and Sontag, 1993a,b), which 
roughly state that for given odd activation functions (such as tanh), the weights 
of a neural network are essentially uniquely determined (up to permutation and 
cell redundancies) by the input/output behavior of the network. These notions do 
assume error-free inputs, weights, and activation functions. 

In general, a computer simulation of an orbit of a given dynamical system in the 
continuuum (known as a pseudo-orbit) is, in fact, far from the orbit in the ideal 
system. Motivated by this problem, Birkhoff introduced the so-called shadowing 
property. A system satisfies the shadowing propertyif all pseudo-orbits are uniformly 
approximated by actual orbits so that the former capture the long-term behavior 
of the system. Bowen showed that sufficiently hyperbolic systems in real euclidean 
spaces do have the shadowing property (Bowen, 1978). However, it appears difficult 
even to give a characterization of exactly which maps on the interval possess the 
property -see e.g. (Coven, Kan, Yorke, 1988). Precise definitions of all terms can 
be found in section 2. 

By comparison to state observability and identifiability, the shadowing property is 
a type of global observability of a system through its dynamical behavior. Since 
autonomous recurrent networks can be seen as dynamical systems, it is natural 
to investigate this property. Thus, a neural net is observable in the sense that its 
behavior (i.e. the sequence of its ideal actions on given initial conditions) can be 
observed on computer simulations or discrete implementations, despite inevitable 
concomitant approximations and errors. 

The purpose of this paper is to explore this property as a deterministic model for 
perturbations of neural network behavior in the presence of arbitrary small errors 
from various sources. The model includes both discrete and analog networks. In 
section 4 we sketch a proof that locally finite boolean neural networks (even with 
an infinite number of neurons)' are all observable in this sense. This is not true 
in general for analog networks, and section 3 is devoted to sketching necessary and 
sufficient conditions for the relatively few analog exceptions for the most common 
transfer functions: hard-thresholds, a variety of sigmoids (hyperbolic tangent, lo­
gistic, etc.) and saturated linear maps. Finally, section 5 discusses the results and 
poses some other problems worthy of further research. 

2 DEFINITIONS AND MAIN RESULTS 

This section contains notation and precise definitions in a general setting, so as to 
include discrete-time networks both with discrete and continuous activations. 

Let f : X ~ X be a continuous map of a compact metric space with metric 1 *, * I. 
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The orbit of x E X is the sequence {x, f(x), ... , fk(x) ... }, i.e. a sequence of points 
{xkh~o for which Xk+1 = f(xk ), for all k ~ o. Given a number 6 > 0, a 6-pseudo­
orbit is a sequence {xk} so that the distances If(xk), xk+11 < 6 for all k ~ o. 
Pseudo-orbits arise as trajectories of ideal dynamical processes contaminated by 
errors and noise. In such cases, especially when errors propagate exponentially, 
it is important to know when the numerical process is actually representing some 
meaningful trajectory of the real process. 

Definition 2.1 The map f on a metric space X is (globally) observable (equiva­
lently] has the shadowing property] or is traceable) if and only if for every f > 0 
there exists a 6 > 0 so that any 6 -pseudo-orbit {xk} is f-approximated by the orbit] 
under f] of some point z E X] i.e. Ixk, fk(z) I < f for all k > o. 

One might observe that computer simulations only run for finite time. On compact 
spaces (as is the case below)' observability can be shown to be equivalent to a similar 
property of shadowing finite pseudo-orbits. 

'Analog neural network' here means a finite number n of units (or cells), each of 
which is characterized by an activation (sometimes called output) function Ui : 

R -+ R, and weight matrix W of synaptic strengths between the various units. 
Units can assume real-valued activations Xi, which are updated synchronously and 
simultaneously at discrete instants of time, according to the equation 

Xi(t + 1) - udL wi,ixi(t)]. (1) 
i 

The total activation of the network at any time is hence given by a vector x in 
euclidean space Rn, and the entire network is characterized by a global dynamics 

T(x) u[W x], (2) 
where W x denotes ordinary product and u is the map acting as Ui along the ith 
component. This component in a vector x is denoted Xi (as opposed to xk, the kth 

term of a sequence). The unit hypercube in Rn is denoted In. An analog network 
is then defined as a dynamical system in a finite-dimensional euclidean space and 
one may then call a neural network (globally) observable if its global dynamics is an 
observable dynamical system. Likewise for boolean networks, which will be defined 
precisely in section 4. 

We end this section with some background facts about observability on the contin­
uum. It is perhaps surprising but a trivial remark that the identity map of the real 
interval is not observable in this sense, since orbits remain fixed, but pseudo-orbits 
may drift away from the original state and can, in fact, be dense in the interval. 
Likewise, common activation functions of neural networks (such as hard thresholds 
and logistic maps) are not observable. For linear maps, observability has long been 
known to be equivalent to hyperbolicity (all eigenvalues>. have 1>'1 =f:. 1). Composi­
tion of observable maps is usually not observable (take, for instance, a hyperbolic 
homeomorphism and its inverse). In contrast, composition of linear and nonob­
servable activation functions in neural networks are, nevertheless, observable. The 
main take-home message can be loosely summarized as follows . 

Theorem 2.1 Except for a negligible fraction of exceptions, discrete-time analog 
neural nets are observable. All discrete (boolean) neural networks are observable. 
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3 ANALOG NEURAL NETWORKS 

This section contains (a sketch) of necessary and sufficient conditions for analog 
networks to be observable for common types of activations functions. 

3.1 HARD-THRESHOLD ACTIVATION FUNCTIONS 

It is not hard to give necessary and sufficient conditions for observability of nets 
with discrete activation functions of the type 

.- { ~ 
where Oi is a theshold characterizing cell i. 

if 1.£ ~ Oi 
else. 

Lemma 3.1 A map 1 : Rn -+ Rn with finite range is observable il and only il it 
is continuous at each point of its range. 

PROOF. The condition is clearly sufficient. If 1 is continuous at every point of its 
range, small enough perturbations Xk +1 of an image I(xk ) have the same image 
I(xk+l ) = l(f(xk )) and hence, for 8 small enough, every 8-pseudo-orbit is traced 
by the first element of the pseudo-orbit. Conversely, assume 1 is not continuous at a 
poin t of its range 1 (XO). Let xl, x2, ... be a sequence constant under 1 whose image 
does not converge to 1(I(xO)) (such a sequence can always be so chosen because 
the range is discrete). Let 

c= ~ min I/(x), f(y)l. 
2.z,yER ... 

For a given 8 > 0 the pseudo-orbit xo, xk, f(xk), 12(xk), ... is not traceable for k 
large enough. Indeed, for any z within €-distance of xO, either f(z) =I f(xO), in which 
case this distance is at least €, or else they coincide, in which case 1/2(z), l(xk)1 > € 
anyway by the choice of xk. 0 

Now we can apply Lemma 3.1 to obtain the following characterization. 

Theorem 3.1 A discrete-time neural net T with weight matrix W := (Wij) and 
threshold vector 0 is observable if and only ~f for every y in the range 01 T, (W Y)i =I 
OJ for every i (1 ::; i ::; n). 

3.2 SIGMOIDAL ACTIVATION FUNCTIONS 

In this section, we establish the observability of arbitrary neural nets with a fairly 
general type of sigmoidal activation functions, as defined next. 

Definition 3.1 A map (j : R -+ R is sigmoidal if it is strictly increasing, bounded 
(above and below), and continuously differentiable. 

Important examples are the logistic map 

1 
a·(1.£) - ---:--~ 

, - 1 + exp( -J.L1.£) , 
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the arctan and the hyperbolic tangent maps 

adu) = arctan(J.tu) 
exp(u) - exp(-u) 

, adu) =tanh(u) = () (). exp u + exp -u 

Note that, in particular, the range of a sigmoidal map is an open and bounded 
interval, which without loss of generality, can be assumed to be the unit interval 
I. Indeed, if a neural net has weight matrix Wand activation function a which is 
conjugate to an activation function a' by a conjugacy ~, then 

a 0 W --.J a' ~W ~-1 

where --.J denotes conjugacy. One can, moreover, assume that the gain factors in the 
sigmoid functions are all J.t = 1 (multiply the rows of W). 

Theorem 3.2 Every neural networks with a sigmoidal activation function has a 
strong attractor, and in particular, it is observable. 

PROOF. Let a neural net with n cells have weight matrix Wand sigmoidal a. 
Consider a parametrized family {T,L}", of nets with sigmoidals given by a", := J.ta. 
It is easy to see that each T", (J.t > 0) is conjugate to T. However, W needs to be 
replaced by a suitable conjugation with a homeomorphism ~w By Brouwer's fixed 
point theorem, T,L has a fixed point p* in In. The key idea in the proof is the fact 
that the dynamics of the network admits a Lyapunov function given by the distance 
from p*. Indeed, 

II T",(x) - T,L(P*) II~ sup I JT", I II x - p* II, 
y 

where J denotes jacobian. Using the chain rule and the fact that the derivatives of 
~'" and aiL are bounded (say, below by b and above by B), the Jacobian satisfies 

IJT,L(Y) I ~ J.tn(bB)nIWI, 

where IW I denotes the determinant of W. Therefore we can choose J.t small enough 
that the right-hand side of this expression is less than 1 for arbitrary y, so that T", 
is a contraction. Thus, the orbit of the first element in any €-pseudo-orbit €-traces 
the orbit. 0 

3.3 SATURATED-LINEAR ACTIVATION FUNCTIONS 

The case of the nondifferentiable saturated linear sigmoid given by the piecewise 
linear map 

{ 
0, 
u, 
I, 

for u < 0 
for 0 ~ u ~ 1 

for u > 1 
(3) 

presents some difficulties. First, we establish a general necessary condition for 
observability, which follows easily for linear maps since shadowing is then equivalent 
to hyperbolicity. 

Theorem 3.3 If T leaves a segment of positive length pointwise fixed, then T lS 

not observable. 
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Although easy to see in the case of one-dimensional systems due to the fact that 
the identity map is not observable, a proof in higher dimensions requires showing 
that a dense pseudo-orbit in the fixed segment is not traceable by points outside 
the segment. The proof makes use of an auxiliary result. 

Lemma 3.2 A linear map L : Rn - Rn, acts along the orbit of a point x in the 
unit hypercube either as an attractor to 0, a repellor to infinity, or else as a rigid 
rotation or reflection. 

PROOF. By passing to the complexification L' : en - en of L and then to a 
conjugate, assume without loss of generality that L has a matrix in Jordan canonical 
form with blocks either diagonal or diagonal with the first upper minor diagonal of 
Is. It suffices to show the claim for each block, since the map is a cartesian product 
of the restrictions to the subspaces corresponding to the blocks. First, consider the 
diagonal case. If the eigenvalues P,I < 1 (P,I > I, respectively), clearly the orbit 
Lk(x) _ 0 (II Lk(x) 11- 00). If P,I = I, L acts as a rotation. In the nondiagonal 
case, it is easy to see that the iterates of x = (XlJ .. " x m ) are given by 

t t-l 

Lt(x) .- L (k) ).t-k Xk+1 + L (k) ).t-k Xk+2 + ... + ).txm' (4) 
k=O k=O 

The previous argument for the diagonal block still applies for 1).1 =I 1. If 1).1 = 1 
and if at least two components of x E In are nonzero, then they are positive and 
again II L(x) 11- 00. In the remaining case, L acts as a rotation since it reduces to 
multiplication of a single coordinate of x by).. 0 

PROOF OF THEOREM 3.3. Assume that T = u 0 Land T leaves invariant a 
segment xy positive length. Suppose first that L leaves invariant the same segment 
as well. By Lemma 3.2, a pseudo-orbit in the interior of the hypercube In cannot 
be traced by the orbit of a point in the hypercube. If L moves the segment xy 
invariant under T, we can aSsume without loss of generality it lies entirely on a 
hyperplane face F of In and the action of u on L(xy) is just a projection over F. 
But in that case, the action of T on the segment is a (composition of two) linear 
map(s) and the same argument applies. 0 

We point out that, in particular, T may not be observable even if W is hyperbolic. 

The condition in Theorem 3.3 is, in fact, sufficient. The proof is more involved and 
is given in detail in (Garzon & Botelho, 1994). WIth Theorem 3.3 one can then 
determine relatively simple necessary and sufficient conditions for observability (in 
terms of the eigenvalues and determinants of a finite number of linear maps). They 
establish Theorem 2.1 for saturated-linear activation functions. 

4 BOOLEAN NETWORKS 

This section contains precise definitions of discrete (boolean) neural networks and 
a sketch of the proof that they are observable in general. 

Discrete neural networks have a finite number of activations and their state sets are 
endowed with an addition and multiplication. The activation function OJ (typically 
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a threshold function) can be given by an arbitrary boolean table, which may vary 
from cell to cell. They can, moreover, have an infinite number of cells (the only case 
of interest here, since finite booolean networks are trivially observable). However, 
since the activation set if is finite, it only makes sense to consider locally finite 
networks, for which every cell i only receives input from finitely many others. 

A total state is now usually called a configuration. A configuration is best thought 
of as a bi-infinite sequence x := XIX2X3 .•• consisting of the activations of all cells 
listed in some fixed order. The space of all configurations is a compact metric space 
if endowed with any of a number of equivalent metrics, such as lx, YI := 2;'" where 
m = inf{i : Xi =1= Yd. In this metric, a small perturbation of a configuration is 
obtained by changing the values of x at pixels far away from Xl. 

The simplest question about observability in a general space concerns the shadowing 
of the identity function. Observability of the identity happens to be a property 
characteristic of configuration spaces. Recall that a totally disconnected topological 
space is one in which the connected component of every element is itself. 

Theorem 4.1 The idenh'ty map id of a compact metric space X is observable iff 
X is totally disconnected. 

The first step in the proof of Theorem 4.3 below is to characterize observability of 
linear boolean networks (i.e. those obeying the superposition principle). 

Theorem 4.2 Every linear continuous map has the shadowing property. 

For the other step we use a global decomposition T = F 0 L of the global dynamics 
of a discrete network as a continuous transformation of configuration space due to 
(Garzon & Franklin, 1990). The reader is referred to (Garzon & Botelho, 1992) for 
a detailed proof of all the results in this section. 

Theorem 4.3 Every discrete (boolean) neural network is observable. 

5 CONCLUSION AND OPEN PROBLEMS 

It has been shown that the particular combination of a linear map with an activa­
tion function is usually globally observable, despite the fact that neither of them 
is observable and the fact that, ordinarily, composition destroys observability. In­
tuitively, this means that observing the input/output behavior of a neural network 
will eventually give away the true nature of the network's behavior, even if the 
network perturbs its behavior slighlty at each step of its evolution. In simple terms, 
such a network cannot fool all the people all of the time. 

The results are valid for virtually every type of autonomous first-order network 
that evolves in discrete-time, whether the activations are boolean or continuous. 
Several results follow from this characterization. For example, in all likelihood there 
exist observable universal neural nets, despite the consequent undecidability of their 
computational behavior. Also, neural nets are thus a very natural set of primitives 
for approximation and implementation of more general dynamical systems. These 
and other consequences will be explored elsewhere (Botelho & Garzon, 1994). 
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Natural questions arise from these results. First, whether observability is a general 
property of most analog networks evolving in continuous time as well. Second, what 
other type of combinations of non observable systems of more general types creates 
observability, i.e. to what extent neural networks are peculiar in this regard. For 
example, are higher-order neural networks observable? Those with sigma-pi units? 
Finally, there is the broader question of robustness of neural network implementa­
tions, which bring about inevitable errors in input and/or weights. The results in 
this paper give a deeper explanation for the touted robustness and fault-tolerance 
of neural network solutions. But, further, they also seem to indicate that it may be 
possible to require that neural net solutions have observable behavior as well, with­
out a tradeoff in the quality of the solution. An exact formulation of this question 
is worthy of further research. 
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