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Abstract 

We present a fast algorithm for non-linear dimension reduction. 
The algorithm builds a local linear model of the data by merging 
PCA with clustering based on a new distortion measure. Exper­
iments with speech and image data indicate that the local linear 
algorithm produces encodings with lower distortion than those built 
by five layer auto-associative networks. The local linear algorithm 
is also more than an order of magnitude faster to train. 

1 Introduction 

Feature sets can be more compact than the data they represent. Dimension reduc­
tion provides compact representations for storage, transmission, and classification. 
Dimension reduction algorithms operate by identifying and eliminating statistical 
redundancies in the data. 

The optimal linear technique for dimension reduction is principal component anal­
ysis (PCA). PCA performs dimension reduction by projecting the original n­
dimensional data onto the m < n dimensional linear subspace spanned by the 
leading eigenvectors of the data's covariance matrix. Thus PCA builds a global 
linear model of the data (an m dimensional hyperplane). Since PCA is sensitive 
only to correlations, it fails to detect higher-order statistical redundancies. One 
expects non-linear techniques to provide better performance; i.e. more compact 
representations with lower distortion. 

This paper introduces a local linear technique for non-linear dimension reduction. 
We demonstrate its superiority to a recently proposed global non-linear technique, 
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and show that both non-linear algorithms provide better performance than PCA 
for speech and image data. 

2 Global Non-Linear Dimension Reduction 

Several researchers (e.g. Cottrell and Metcalfe 1991) have used layered feedforward 
auto-associative networks with a bottle-neck middle layer to perform dimension 
reduction. It is well known that auto-associative nets with a single hidden layer 
cannot provide lower distortion than PCA (Bourlard and Kamp, 1988). Recent 
work (e.g. Oja 1991) shows that five layer auto-associative networks can improve 
on PCA. These networks have three hidden layers (see Figure l(a)). The first and 
third hidden layers have non-linear response, and are referred to as the mapping 
layers. The m < n nodes of the middle or representation layer provide the encoded 
signal. 

The first two layers of weights produce a projection from Rn to Rm. The last two 
layers of weights produce an immersion from R minto R n. If these two maps are 
well chosen, then the complete mapping from input to output will approximate the 
identity for the training data. If the data requires the projection and immersion 
to be non-linear to achieve a good fit, then the network can in principal find such 
functions. 
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Figure 1: (a) A five layer feedforward auto-associative network. This network can 
perform a non-linear dimension reduction from n to m dimensions. (b) Global 
curvilinear coordinates built by a five layer network for data distributed on the 
surface of a hemisphere. When the activations of the representation layer are swept, 
the outputs trace out the curvilinear coordinates shown by the solid lines. 

The activities of the nodes in the representation layer form global curvilinear co­
ordinates on a submanifold of the input space (see Figure l(b)). We thus refer 
to five layer auto-associative networks as a global, nonlinear dimension reduction 
technique. 
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3 Locally Linear Dimension Reduction 

Five layer networks have drawbacks; they can be very slow to train and they are 
prone to becoming trapped in poor local optima. Furthermore, it may not be 
possible to accurately fit global, low dimensional, curvilinear coordinates to the 
data. We propose an alternative that does not suffer from these problems. 

Our algorithm pieces together local linear coordinate patches. The local regions are 
defined by the partition of the input space induced by a vector quantizer (VQ). The 
orientation of the local coordinates is determined by PCA (see Figure 2). In this 
section, we present two ways to obtain the partition. First we describe an approach 
that uses Euclidean distance, then we describe a new distortion measure which is 
optimal for our task (local PCA). 
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Figure 2: Local coordinates built by our algorithm (dubbed VQPCA) for data dis­
tributed on the surface of a hemisphere. The solid lines represent the two principal 
eigen-directions in each Voronoi cell. The region covered by one Voronoi cell is 
shown shaded. 

3.1 Euclidean partitioning 

Here, we do a clustering (with Euclidean distance) followed by PCA in each of the 
local regions. The hybrid algorithm, dubbed VQPCA, proceeds in three steps: 

1. Using competitive learning, train a VQ (with Euclidean distance) with Q 
reference vectors (weights) (rl' r2, ... ,rQ). 

2. Perform a local PCA within each Voronoi cell of the VQ. For each cell, 
compute the local covariance matrix for the data with respect to the cor­
responding reference vector (centroid) rc. Next compute the eigenvectors 
(e1, ... ,e~) of each covariance matrix. 

3. Choose a target dimension m and project each data vector x onto 
the leading m eigenvectors to obtain the local linear coordinates 
z = (e1 . (x - rc), ... , e~ . (x - rc)). 
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The encoding of x consists of the index c of the reference cell closest (Euclidean 
distance) to x, together with the m < n component vector z. The decoding is given 
by 

(1) 
i=l 

where r c is the reference vector (centroid) for the cell c, and ei are the leading 
eigenvectors of the covariance matrix of the cell c. The mean squared reconstruction 
error incurred by VQPCA is 

m 

(2) 
i=l 

where E[·] denotes an expectation with respect to x, and x is defined in (1). 

Training the VQ and performing the local PCA are very fast relative to training a 
five layer network. The training time is dominated by the distance computations 
for the competitive learning. This computation can be speeded up significantly by 
using a multi-stage architecture for the VQ (Gray 1984). 

3.2 Projection partitioning 

The VQPCA algorithm as described above is not optimal because the clustering is 
done independently of the PCA projection. The goal is to minimize the expected 
error in reconstruction (2). We can realize this by using the expected reconstruction 
error as the distortion measure for the design of the VQ. 

The reconstruction error for VQPCA (Erecon defined in (2)) can be written in matrix 
form as 

Erecon = E[ (x - ref P; Pc(X - rc)] , (3) 
where Pc is an m x n matrix whose rows are the orthonormal trailing eigenvectors 
of the covariance matrix for the cell c. This is the mean squared Euclidean distance 
between the data and the local hyperplane. 

The expression for the VQPCA error in (2) suggests the distortion measure 

d(x, rc) = (x - rc)T P; Pc(x - rc) . (4) 
We call this the reconstruction distance. The reconstruction distance is the error 
incurred in approximating x using only m local PCA coefficients. It is the squared 
projection of the difference vector x - r c on the trailing eigenvectors of the covariance 
matrix for the cell c. Clustering with respect to the reconstruction distance directly 
minimizes the expected reconstruction error Erecon. 

The modified VQPCA algorithm is: 

1. Partition the input space using a VQ with the reconstruction distance mea­
sure 1 in (4) . 

2. Perform a local PCA (same as in steps 2 and 3 of the algorithm as described 
in section 3.1). 

IThe VQ is trained using the (batch mode) generalized Lloyd's algorithm (Gersho and 
Gray, 1992) rather than an on-line competitive learning. This avoids recomputing the 
matrix Pc (which depends on Tc) for each input vector. 
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4 Experimental Results 

We apply PCA, five layer networks (5LNs), and VQPCA to dimension reduction 
of speech and images. We compare the algorithms using two performance criteria: 
training time and the distortion in the reconstructed signal. The distortion measure 
is the normalized reconstruction error: 

£norm 

4.1 Model Construction 

£recon 
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The 5LNs were trained using three optimization techniques: conjugate gradient 
descent (CGD), the BFGS algorithm (a quasi-Newton method (Press et al1987)), 
and stochastic gradient descent (SGD). In order to limit the space of architectures, 
the 5LNs have the same number of nodes in both of the mapping (second and 
fourth) layers. 

For the VQPCA with Euclidean distance, clustering was implemented using stan­
dard VQ (VQPCA-Eucl) and multistage quantization (VQPCA-MS-E). The multi­
stage architecture reduces the number of distance calculations and hence the train­
ing time for VQPCA (Gray 1984). 

4.2 Dimension Reduction of Speech 

We used examples of the twelve monothongal vowels extracted from continuous 
speech drawn from the TIMIT database (Fisher and Doddington 1986). Each input 
vector consists of 32 DFT coefficients (spanning the frequency range 0-4kHz), time­
averaged over the central third of the utterance. We divided the data set into a 
training set containing 1200 vectors, a validation set containing 408 vectors and 
a test set containing 408 vectors. The validation set was used for architecture 
selection (e.g the number of nodes in the mapping layers for the five layer nets). 
The test set utterances are from speakers not represented in the training set or the 
validation set. Motivated by the desire to capture formant structure in the vowel 
encodings, we reduced the data from 32 to 2 dimensions. (Experiments on reduction 
to 3 dimensions gave similar results to those reported here (Kambhatla and Leen 
1993).) 

Table 1 gives the test set reconstruction errors and the training times. The VQPCA 
encodings have significantly lower reconstruction error than the global PCA or five 
layer nets. The best 5LNs have slightly lower reconstruction error than PC A, but 
are very slow to train. Using the multistage search, VQPCA trains more than 
two orders of magnitude faster than the best 5LN, and achieves an error about 0.7 
times as great. The modified VQPCA algorithm (with the reconstruction distance 
measure used for clustering) provides the least reconstruction error among all the 
architectures tried. 
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Table 1: Speech data test set reconstruction errors and training times. Architec­
tures represented here are from experiments with the lowest validation set error 
over the parameter ranges explored. The numbers in the parentheses are the values 
of the free parameters for the algorithm represented (e.g 5LN-CGD (5) indicates a 
network with 5 nodes in both the mapping (2nd and 4th) layers, while VQPCA-Eucl 
(50) indicates a clustering into 50 Voronoi cells). 

ALGORITHM 

PCA 
5LN-CGD (5) 
5LN-BFGS (30) 
5LN-SGD (25) 
VQPCA-Eucl (50) 
VQPCA-MS-E (9x9) 
VQPCA-Recon (45) 

i norm 

0.0060 
0.0069 
0.0057 
0.0055 
0.0037 
0.0036 
0.0031 

TRAINING TIME 
(in seconds) 

11 
956 

28,391 
94,903 

1,454 
142 
931 

Table 2: Reconstruction errors and training times for a 50 to 5 dimension reduction 
of images. Architectures represented here are from experiments with the lowest 
validation set error over the parameter ranges explored. 

ALGORITHM 

PCA 
5LN-CGD (40) 
5LN-BFGS (20) 
5LN-SGD (25) 
VQPCA-Eucl (20) 
VQPCA-MS-E (8x8) 
VQPCA-Recon (25) 

i norm 

0.458 
0.298 
0.052 
0.350 
0.140 
0.176 
0.099 

4.3 Dimension Reduction of Images 

TRAINING TIME 
(in seconds) 

5 
3,141 

10,389 
15,486 

163 
118 
108 

The data consists of 160 images of the faces of 20 people. Each is a 64x64, 8-bit/pixel 
grayscale image. We extracted the first 50 principal components of each image and 
use these as our experimental data. This is the same data and preparation that 
DeMers and Cottrell used in their study of dimension reduction with five layer 
auto-associative nets (DeMers and Cottrell 1993). They trained auto-associators to 
reduce the 50 principal components to 5 dimensions. 

We divided the data into a training set containing 120 images, a validation set (for 
architecture selection) containing 20 images and a test set containing 20 images. 
We reduced the images to 5 dimensions using PCA, 5LNs2 and VQPCA. Table 2 

2We used 5LNs with a configuration of 50-n-5-n-50, n varying from 10 to 40 in incre­
ments of 5. The BFGS algorithm posed prohibitive memory and time requirements for 
n > 20 for this task. 
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Table 3: Reconstruction errors and training times for a SO to S dimension reduction 
of images (training with all the data). Architectures represented here are from 
experiments with the lowest error over the parameter ranges explored. 

ALGORITHM [norm TRAINING TIME 
(in seconds) 

PCA 0.40S4 7 
SLN-SGD (30) 0.1034 2S,306 
SLN-SGD (40) 0.0729 31,980 
VQPCA-Eucl (SO) 0.0009 90S 
VQPCA-Recon (SO) 0.0017 216 

summarizes the results. We notice that a five layer net obtains the encoding with 
the least error for this data, but it takes a long time to train. Presumably more 
training data would improve the best VQPCA results. 
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Figure 3: Two representative images: Left to right - Original SO-PC image, recon­
struction from S-D encodings: PCA, SLN-SGD(40), VQPCA(lO), and VQPCA(SO). 

For comparison with DeMers and Cottrell's (DeMers and Cottrell 1993) work, we 
also conducted experiments training with all the data. The results are summarized3 

in Table 3 and Figure 3 shows two sample faces. Both non-linear techniques produce 
encodings with lower error than PCA, indicating significant non-linear structure in 
the data. With the same data, and with a SLN with 30 nodes in each mapping layer, 
DeMers (DeMers and Cottrell 1993) obtains a reconstruction error [norm 0.13174 . 

We note that the VQPCA algorithms achieve an order of magnitude improvement 
over five layer nets both in terms of speed of training and the accuracy of encodings. 

3For 5LNs, we only show results with SGD in order to compare with the experimental 
results of DeMers. For this data, 5LN-CGD gave encodings with a higher error and 5LN­
BFGS posed prohibitive memory and computational requirements. 

4DeMers reports half the MSE per output node, E = (1/2) * (1/50) * MSE = 0.00l. 
This corresponds to [norm = 0.1317 
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5 Summary 

We have presented a local linear algorithm for dimension reduction. We propose 
a new distance measure which is optimal for the task of local PCA. Our results 
with speech and image data indicate that the nonlinear techniques provide more 
accurate encodings than PCA. Our local linear algorithm produces more accurate 
encodings (except for one simulation with image data), and trains much faster than 
five layer auto-associative networks. 
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