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Abstract 

The conventional Bayesian justification of backprop is that it finds the 
MAP weight vector. As this paper shows, to find the MAP i-o function 
instead one must add a correction tenn to backprop. That tenn biases one 
towards i-o functions with small description lengths, and in particular fa­
vors (some kinds of) feature-selection, pruning, and weight-sharing. 

1 INTRODUCTION 

In the conventional Bayesian view ofbackpropagation (BP) (Buntine and Weigend, 1991; 
Nowlan and Hinton,1994; MacKay,I992; Wolpert, 1993), one starts with the "likelihood" 
conditional distribution P(training set = t I weight vector w) and the "prior" distribution 
P(w). As an example, in regression one might have a "Gaussian likelihood", P(t I w) oc: 

exp[-x2(w, t)] == I1i exp [-(net(w, tx(i» - ty(i) )2/2c?] for some constant CJ. (tx(i) and ty(i) 
are the successive input and output values in the training set respectively, and net(w, .) is 
the function, induced by w, taking input neuron values to output neuron values.) As another 
example, the "weight decay" (Gaussian) prior is P(w) oc: eXp(-a(w2» for some constant a. 

Bayes' theorem tells us that P(w I t) oc P(t I w) P(w). Accordingly, the most probable weight 
given the data - the "maximum a posteriori" (MAP) w - is the mode over w of P(t I w) P(w), 
which equals the mode over w of the "cost function" L(w, t) == In[P(t I w)] + In[P(w)]. So 
for example with the Gaussian likelihood and weight decay prior, the most probable w giv-
en the data is the w minimizing X2(w, t) + aw2. Accordingly BP with weight decay can be 
viewed as a scheme for trying to find the function from input neuron values to output neu­
ron values (i-o function) induced by the MAP w. 
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One peculiar aspect of this justification of weight-decay BP is the fact that rather than the 
i-o function induced by the most probable weight vector. in practice one would usually pre­
fer to know the most probable i-o function. (In few situations would one care more about a 
weight vector than about what that weight vector parameterizes.) Unfortunately. the differ­
ence between these two i-o functions can be large; in general it is not true that "the most 
probable output corresponds to the most probable parameterU (Denker and LeCun. 1991). 

This paper shows that to fmd the MAP i-o function rather than the MAP w one adds a "cor­
rection termU to conventional BP. That term biases one towards i-o functions with small 
description lengths. and in particular favors feature-selection. pruning and weight-sharing. 
In this that term constitutes a theoretical justification for those techniques. 

Although cast in terms of neural nets. this paper·s analysis applies to any case where con­
vention is to use the MAP value of a parameter encoding Z to estimate the value of Z. 

2 BACKPROP OVER 1-0 FUNCTIONS 
Assume the nee s architecture is fixed. and that weight vectors w live in a Euclidean vector 
space W of dimension IWI. Let X be the set of vectors x which can be loaded on the input 
neurons. and 0 the set of vectors 0 which can be read off the output neurons. Assume that 
the number of elements in X (lXI) is finite. This is always the case in the real world. where 
measuring devices have finite accuracy. and where the computers used to emulate neural 
nets are finite state machines. For similar reasons 0 is also finite in practice. However for 
now assume that 0 is very large and "fine-grained". and approximate it as a Euclidean vec­
tor space of dimension 101. (This assumption usually holds with neural nets. where output 
values are treated as real-valued vectors.) This assumption will be relaxed later. 

Indicate the set of functions taking X to 0 by cl>. (net(w •. ) is an element of cl>.) Any cI» E cl> 
is an (lXI x 101)-dimensional Euclidean vector. Accordingly. densities over W are related 
to densities over cl> by the usual rules for transforming densities between IWI-dimensional 
and (IXI x IOI)-dimensional Euclidean vector spaces. There are three cases to consider: 

1) IWI < IXIIOL In general. as one varies over all w's the corresponding i-o func-
tions net(w, .) map out a sub-manifold of cl> having lower dimension than cl>. 
2) IWI > IXIIOL There are an infinite number of w's corresponding to each cI». 
3) IWI = IXIIOI. This is the easiest case to analyze in detail. Accordingly I will deal 
with it first, deferring discussion of cases one and two until later. 

With some abuse of notation, let capital letters indicate random variables and lower case 
letters indicate values of random variables. So for example w is a value of the weight vector 
random variable W. Use 'p' to indicate probability densities. So for example P<l>IT<cI» I t) is 
the density of the i-o function random variable cl>, conditioned on the training set random 
variable T, and evaluated at the values cl> = cI» and T = t. 

In general, any i-o function not expressible as net(w, .) for some w has zero probability. For 
the other i-o functions, with S(.) being the multivariable Dirac delta function, 

p<l>(net(w •. » = jdw' Pw(w') S(net(w', .) - net(w, .». (1) 

When the mapping cl> = net(W, .) is one-to-one, we can evaluate equation (1) to get 

p4>lT<net(w, .) I t) = Pwrr(w I t) / J<I>.W<w), (2) 

where J<I> w(w) is the Jacobian of the W ~ cl> mapping: 
• 
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J<I>,W(w) == I det[ ()<l>i / dWj lew) I = I det[ d net(w, ')i / dWj ] I. (3) 

"net(w, .)t means the i'th component of the i-o function net(w, .). "net(w, x)" means the 
vector 0 mapped by net(w, .) from the input x, and "net(w, X)k" is the k'th component of o. 
So the "i" in "net(w, .)( refers to a pair of values {x, k}. Each matrix value a~ / dWj is the 
partial derivative of net(w, x>t with respect to some weight, for some x and k. J<I>,w(w) can 
be rewritten as detla [gij(W)], where gij(w) == ~ [(d<!>t / dWi) (d~ / dWj)] is the metric of 
the W ~ ct» mapping. This form of J~ w(w) is usually more difficult to evaluate though. , 

Unfortunately, cI» = net(w, .) is not one-to-one; where J<I>,w(w) * 0 the mapping is locally 
one-to-one, but there are global symmetries which ensure that more than one w corre­
sponds to each cI». (Such symmetries arise from things like permuting the hidden neurons 
or changing the sign of all weights leading into a hidden neuron - see (Fefferman, 1993) 
and references therein.) To circumvent this difficulty we must make a pair of assumptions. 

To begin, restrict attention to Winj , those values w of the variable W for which the Jaco­
bian is non-zero. This ensures local injectivity of the map between W and ct». Given a par­
ticular w E W inj' let k be the number of w' E W inj such that net(w, .) = net(w', .). (Since 
net(w,.) = net(w, .), k ~ 1.) Such a set ofk vectors form an equivalence class, {w}. 

The first assumption is that for all w E W inj the size of (w) (i.e., k) is the same. This will 
be the case if we exclude degenerate w (e.g .• w's with all first layer weights set to 0). The 
second assumption is that for all w' and w in the same equivalence class, PWID (w I d) = 
PWID (w' I d). This is usually the case. (For example, start with w' and relabel hidden neu­
rons to get a new WE (w'). If we assume the Gaussian likelihood and prior, then since 
neither differs for the two w's the weight-posterior is also the same for the two w's.) Given 
these assumptions, p<l>IT(net(w, .) I t) = k pWlnw I t) / J<I>,w(w). So rather than minimize the 
usual cost function, L(w, t), to find the MAP ct» BP should minimize L'(w. t) == L(w, t) + 
In[ J~W<w)]. The In[ J~w(w)] term constitutes a correction term to conventional BP. , , 

One should not confuse the correction term with the other quantities in the neural net liter­
ature which involve partial derivative matrices. As an example, one way to characterize 
the "quality" of a local peak w' of a cost function involves the Hessian of that cost function 
(Buntine and Weigend, 1991). The correction term doesn't directly concern the validity of 
such a Hessian-based quality measure. However it does concern the validity of some 
implementations of such a measure. In particular. the correction term changes the location 
of the peak w'. It also suggests that a peak's quality be measured by the Hessian of 
L'(w', t) with respect to cI», rather than by the Hessian of L(w', t) with respect to w. (As an 
aside on the subject of Hessians, note that some workers incorrectly use Hessians when 
they attempt to evaluate quantities like output-variances. See (Wolpert, 1994).) 

If we stipulate that the pcI>ln cI» I t) one encounters in the real world is independent of how 
one chooses to parameterize ct», then the probability density of our parameter must depend 
on how it gets mapped to ct». This is the basis of the correction term. As this suggests, the 
correction term won't arise if we use non-pcI>lncl» I t)-based estimators, like maximum-like­
lihood estimators. (This is a basic difference between such estimators and MAP estimators 
with a uniform prior.) The correction term is also irrelevant if it we use an MAP estimate 
but J~ w(w) is independent of w (as when net (w •. ) depends linearly on w). And for non-, 
linear net(w, .), the correction term has no effect for some non-MAP-based ways to apply 
Bayesianism to neural nets, like guessing the posterior average ct» (Neal, 1993): 
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E(ct» It) == Idct> Pcl>lnct> It) ct> = Idw PWIT(w I t) net(w, .), (4) 

so one can calculate E(ct» I t) by working in W, without any concern for a correction tenn. 
(Loosely speaking, the Jacobian associated with changing integration variables cancels the 
Jacobian associated with changing the argument of the probability density. A formal deri­
vation - applicable even when IWI-:/: IXI x 101 - is in the appendix of (Wolpert, 1994).) 

One might think that since it's independent of 1, the correction term can be absorbed into 
Pw(w). Ironically, it is precisely because quantities like E(ct» I t) aren't affected by the cor-
rection tenn that this is impossible: Absorb the correction term into the prior, giving a new 
prior P*w(w) == d x Pw(w) x J<I) w(w) (asterisks refers to new densities, and d is a normal-, 
ization constant). Then p*<I)IT(net(w, .) I t) = pwrr(w I t). So by redefining what we call the 
prior we can justify use of conventional uncorrected BP; the (new) MAP ct> corresponds to 
the w minimizing L(w, t). However such a redefinition changes E(ct» I t) (amongst other 
things): Idct> P*<I)IT(ct> I t) ct> = Idw P*Wlnw I t) net(w, .) -:/: Idw Pwrr(w I t) net(w, .) = 
Idct> Pcl>lnct> I t) ct>. So one can either modify BP (by adding in the correction term) and leave 
E(ct» I t) alone, or leave BP alone but change E(ct» I t); one can not leave both unchanged. 

Moreover, some procedures involve both prior-based modes and prior-based integrals, and 
therefore are affected by the correction tenn no matter how Pw(w) is redefined. For exam-
ple, in the evidence procedure (Wolpert, 1993; MacKay, 1992) one fixes the value of a 
hyperparameter r (e.g., ex from the introduction) to the value 1 maximizing Pr IT(11 t). 
Next one find the value s' maximizing PSIT,r (s' I t, 1) for some variable S. Finally, one 
guesses the <I> associated with s'. Now it's hard to see why one should use this procedure 
with S = W (as is conventional) rather than with S = ct». But with S = ct» rather than W, one 
must factor in the correction term when calculating PSIT,r (s I t, 1), and therefore the 
guessed ct> is different from when S = W. If one tries to avoid this change in the guessed ct> 
by absorbing the correction tenn into the prior PWIr(w I y), then Pn nY I t) - which is given 
by an integral involving that prior - changes. This in turn changes 1, and therefore the 
guessed ct> again is different. So presuming one is more directly interested in ct» rather than 
W, one can't avoid having the correction term affect the evidence procedure. 

It should be noted that calculating the correction tenn can be laborious in large nets. One 
should bear in mind the determinant-evaluation tricks mentioned in (Buntine and 
Weigend, 1991), as well as others like the identity In[ J<I),w(w) ] = Tr(ln[ ~ / dwj ]) == 
Tr(ln*[ d$i / dwj n, where In*(.) is In(.) evaluated to several orders. 

3 EFFECTS OF THE CORRECTION TERM 
To illustrate the effects of the correction term, consider a perceptron with a single output 
neuron, N input neurons and a unary input space: 0 = tanh(w . x), and x always consist of 
a single one and N - 1 zeroes. For this scenario d<l>i / dwj is an N x N diagonal matrix, and 
In[ J<I),w(w)] = -2 ~~=l In[ COSh(Wk)]. Assume the Gaussian prior and likelihood of the 
introduction, and for simplicity take 2cr2 = 1. Both L(w, t) and L'(w, t) are sums of terms 
each of which only concerns one weight and the corresponding input neuron. Accord­
ingly, it suffices to consider just the i' th weight and the corresponding input neuron. 

Let xCi) be the input vector which has its 1 in neuron i. Let ojCi) be the output of the j'th 
of the pairs in the training set with input x(i), and mi the number of such pairs. With ex = 0 
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(no weight decay), L(w, t) = X2(1, w), which is minimized by W'i = tanh-l [ l:j~l oj(i) / mil. 
If we instead try to minimize X2(t, w) + Jw.MW) though, then for low enough mi (e.g., mi . 
= 1), we find that there is no minimum. The correction term pushes waway from 0, and 

for low enough mi the likelihood isn't strong enough to counteract this push. 
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Figures 1 through 3: Train using unmodified BP on training set 1, and feed input x into 
the resultant net. The horizontal axis gives the output you get If t and x were still used 
but training had been with modified BP, the output would have been the value on the 
vertical axis. In succession, the three figures have a = .6, .4, .4, and m = 1,4, 1. 
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Figure 4: The horizontal axis is IWil. The top 
curve depicts the weight decay regularizer, 
aw?, and the bottom curve shows that regu­
larizer modified by the correction term. a = .2. 

When weight-decay is used though, modified BP finds a solution, just like unmodified BP 
does. Since the correction term "pushes out" w, and since tanh(.) grows with its argument, 
a <I> found by modified BP has larger (in magnitude) values of 0 than does the correspond­
ing <I> found by unmodified BP. In addition, unlike unmodified BP, modified BP has multi­
ple extrema over certain regimes. All of this is illustrated in figures (1) through (3), which 
graph the value of 0 resulting from using modified BP with a particular training set t and 
input value x vs. the value of 0 resulting from using unmodified BP with t and x. Figure 
(4) depicts the wi-dependences of the weight decay term and of the weight-decay term 
plus the correction term. (When there's no data, BP searches for minima of those curves.) 

Now consider multi-layer nets, possibly with non-unary X. Denote a vector of the compo-
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nents of w which lead from the input layer into hidden neuron K by w[K)' Let x· be the 
input vector consisting of all O's. Then a tanh(W[K) . x') I aWj = 0 for any j, w, and K, and 
for any w, there is a row of ~I awj which is all zeroes. This in tum means that Jw,w(w) = 
o for any w, which means that Winj is empty, and PWIT(' I t) is independent of the data t. 
(Intuitively, this problem arises since the 0 corresponding to x· can't vary with w, and 
therefore the dimension of ct> is less than IWI) So we must forbid such an all-zeroes x'. The 
easiest way to do this is to require that one input neuron always be on, i.e., introduce a bias 
unit. An alternative is to redefine ct> to be the functions from the set {X - (0, 0, ... , O)} to 0 
rather than from the set X to O. Another alternative, appropriate when the original X is the 
set of all input neuron vectors consisting of O's and 1 's, is to instead have input neuron val­
ues E {z * 0, I}. (In general z * -1 though; due to the symmetries of the tanh, for many 
architectures z = -1 means that two rows of a<l>i I awj are identical up to an overall sign, 
which means that Jw,w(w) = 0.) This is the solution implicitly assumed from now on. 

Jw,w(w) will be small - and therefore Pw(net(w, .» will be large - whenever one can make 
large changes to w without affecting, = net(w, .) much. In other words, pw(net(w, .» will 
be large whenever we don't need to specify w very accurately. So the correction factor 
favors those w which can be expressed with few bits. In other words, the correction factor 
enforces a sort of automatic MDL (Rissanen, 1986; Nowlan and Hinton, 1994). 

More generally, for any multi-layer architecture there are many "singular weights" w sin ~ 
W inj such that Jw.w(w sin) is not just small but equals zero exactly. Pw(w) must compen­
sate for these singularities, or the peaks of PCI)rr<, I t) won't depend on t. So we need to 
have pw(w) ~ 0 as w ~ wsin' Sometimes this happens automatically. For example often 
Wsin includes infinite-valued w's, since tanh'(oo) = O. Because Pw(oo) = 0 for the weight­
decay prior, that prior compensates for the infmite-w singularities in the correction term. 

For other w sin there is no such automatic compensation, and we have to explicitly modify 
pwCw) to avoid singularities. In doing so though it seems reasonable to maintain a "bias" 
towards the wsin, that Pw(w) goes to zero slowly enough so that the values pw(net(w, .» 
are "enhanced" for w near wsin' Although a full characterization of such enhanced w is not 
in hand, it's easy to see that they include certain kinds of pruned nets (Hassibi and Stork, 
1992), weight-shared nets (Nowlan and Hinton, 1994), and feature-selected nets. 

To see that (some kinds of) pruned nets have singular weights, let w* be a weight vector 
with a zero-valued weight coming out of hidden neuron K. By (1) Pw(net(w*, .» = 
Jdw' Pw(w,) S(net(w', .) - net(w*, .». Since we can vary the value of each weight w*i lead­
ing into neuron K without affecting net(w*, .), the integral diverges. So w* is singUlar; 
removing a hidden neuron results in an enhanced probability. This constitutes an a priori 
argument in favor of trying to remove hidden neurons during training. 

This argument does not apply to weights leading into a hidden neuron; Jw,w(w) treats 
weights in different layers differently. This fact suggests that however pw(w) compen­
sates for the singularities in Jw.w(w), weights in different layers should be treated differ­
ently by Pw(w). This is in accord with the advice given in (MacKay, 1992). 

To see that some kinds of weight-shared nets have singular weights, let w' be a weight vec­
tor such that for any two hidden neurons K and K' the weight from input neuron i to K 
equals the weight from i to K', for all input neurons i. In other words, w is such that all hid-
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den neurons compute identical functions of x. (For some architectures we'll actually only 
need a single pair of hidden neurons to be identical.) Usually for such a situation there is a 
pair of columns of the matrix ~ / awj which are exactly proportional to one another. (For 
example, in a 3-2-1 architecture, with X = {z, I} 3, IWI = IXI x 101 = 8, and there are four 
such pairs of columns.) This means that JfI>,W(w') = 0; w' has an enhanced probability, and 
we have an a priori argument in favor of trying to equate hidden neurons during training. 

The argument that feature-selected nets have singular weights is architecture-dependent, 
and there might be reasonable architectures for which it fails. To illustrate the argument, 
consider the 3-2-1 architecture. Let xl(k) and x2(k) with k = {I, 2,3) designate three dis-
tinct pairs of input vectors. For each k have xl (k) and x2(k) be identical for all input neu­
rons except neuron A, for which they differ. (Note there are four pairs of input vectors 
with this property, one for each of the four possible patterns over input neurons B and C.) 
Let w' be a weight vector such that both weights leaving A equal zero. For this situation 
net(w', xl(k» = net(w', x2(k» for all k. In addition a net(w, xl(k» / awj = 
a net(w, x2(k» / awj for all weights Wj except the two which lead out of A. So k = 1 gives 
us a pair of rows of the matrix a~ / awj which are identical in all but two entries (one row 
for Xl (k) and one for x2(k». We get another such pair of rows, differing from each other in 
the exact same two entries, for k = 2, and yet another pair for k = 3. So there is a linear 
combination of these six rows which is all zeroes. This means that JfI>, w(w') = O. This con­
stitutes an a priori argument in favor of trying to remove input neurons during training. 

Since it doesn't favor any Pw(w), the analysis of this paper doesn't favor any pfl>( <1». How­
ever when combined with empirical knowledge it suggests certain pfl>(cj). For example, 
there are functions g(w) which empirically are known to be good choices for pfl>(net(w, .» 

(e.g., g(w) oc:exp[awl]). There are usually problems with such choices of Pfl>(cj) though. 
For example, these g(w) usually make more sense as a prior over W than as a prior over 
<1>, which would imply pfl>(net(w, .» = g(w) / J<I>W(w). Moreover it's empirically true that , 
enhanced w should be favored over other w, as advised by the correction term. So it makes 
sense to choose a compromise between g(w) and g(w) / J<I>W(w). An example is pfl>(cj) oc: , 
g(w) / [A} + tanh(~ x JfI>,w(w»] for two hyperparameters A} > 0 and ~ > O. 

4 BEYOND THE CASE OF BACKPROP WITH IWI = IXIIOI 
When 0 does not approximate a Euclidean vector space, elements of <1> have probabilities 
rather than probability densities, and P(cj) It) = jdw PWl'r(w I t) S(net(w, .), cj), (0(., .) being 
a Kronecker delta function). Moreover, if 0 is a Euclidean vector space but WI > IXI 101, 
then again one must evaluate a difficult integral; <1> = net(W, .) is not one-to-one so one 
must use equation (1) rather than (2). Fortunately these two situations are relatively rare. 

The final case to consider is IWI < IXIIOI (see section two). Let Sew) be the surface in <1> 
which is the image (under net(W, .» ofW. For all <I> PfI>(cj) is either zero (when cj) Ii': S(W» 
or infinite (when cj) E S(W». So as conventionally defined, "MAP cj)" is not meaningful. 

One way to deal with this case is to embed the net in a larger net, where that larger net's 
output is relatively insensitive to the values of the newly added weights. An alternative 
that is applicable when IWI / 101 is an integer is to reduce X by removing "uninteresting" 
x's. A third alternative is to consider surface densities over Sew), Ps(W)(cj), instead of vol-
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ume densities over <%». P«l>(e!»). Such surface densities are given by equation (2). if one uses 
the metric form of J«l>,w(w). (Buntine has emphasized that the Jacobian form is not even 
defined for IWI < IXIIOI. since ()cj)i / aWj is not square then (personal communication).) 

As an aside, note that restricting P«l>(e!») to Sew) is an example of the common theoretical 
assumption that "target functions" come from a pre-chosen "concept class". In practice 
such an assumption is usually ludicrous - whenever it is made there is an implicit hope that 
it constitutes a valid approximation to a more reasonable P«l>(e!»). 

When decision theory is incorporated into Bayesian analysis. only rarely does it advise us 
to evaluate an MAP quantity (Le.. use BP). Instead Bayesian decision theory usually 
advises us to evaluate quantities like E(<%» I t) (Wolpert. 1994). Just as it does for the use of 
MAP estimators. the analysis of this paper has implications for the use of such E(<%» I t) 
estimators. In particular. one way to evaluate E(<%»I t) = jdw PwIT(w I t) net(w •. ) is to 
expand net(w •. ) to low order and then approximate PWlnw I t) as a sum of Gaussians 
(Buntine and Weigend. 1991). Equation (4) suggests that instead we write E(<%» I t) as 
jde!» P«l>lne!» I t) e!» and approximate P«l>IT(e!» I t) as a sum of Gaussians. Since fewer approxi­
mations are used (no low order expansion of net(w •. », this might be more accurate. 
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