
Bayesian Backpropagation Over 1-0 Functions
Rather Than Weights

David H. Wolpert
The Santa Fe Institute
1660 Old Pecos Trail
Santa Fe, NM 87501

Abstract

The conventional Bayesian justification of backprop is that it finds the
MAP weight vector. As this paper shows, to find the MAP i-o function
instead one must add a correction tenn to backprop. That tenn biases one
towards i-o functions with small description lengths, and in particular fa­
vors (some kinds of) feature-selection, pruning, and weight-sharing.

1 INTRODUCTION

In the conventional Bayesian view ofbackpropagation (BP) (Buntine and Weigend, 1991;
Nowlan and Hinton,1994; MacKay,I992; Wolpert, 1993), one starts with the "likelihood"
conditional distribution P(training set = t I weight vector w) and the "prior" distribution
P(w). As an example, in regression one might have a "Gaussian likelihood", P(t I w) oc:

exp[-x2(w, t)] == I1i exp [-(net(w, tx(i» - ty(i))2/2c?] for some constant CJ. (tx(i) and ty(i)
are the successive input and output values in the training set respectively, and net(w, .) is
the function, induced by w, taking input neuron values to output neuron values.) As another
example, the "weight decay" (Gaussian) prior is P(w) oc: eXp(-a(w2» for some constant a.

Bayes' theorem tells us that P(w I t) oc P(t I w) P(w). Accordingly, the most probable weight
given the data - the "maximum a posteriori" (MAP) w - is the mode over w of P(t I w) P(w),
which equals the mode over w of the "cost function" L(w, t) == In[P(t I w)] + In[P(w)]. So
for example with the Gaussian likelihood and weight decay prior, the most probable w giv-
en the data is the w minimizing X2(w, t) + aw2. Accordingly BP with weight decay can be
viewed as a scheme for trying to find the function from input neuron values to output neu­
ron values (i-o function) induced by the MAP w.

200

Bayesian Backpropagation over 1-0 Functions Rather Than Weights 201

One peculiar aspect of this justification of weight-decay BP is the fact that rather than the
i-o function induced by the most probable weight vector. in practice one would usually pre­
fer to know the most probable i-o function. (In few situations would one care more about a
weight vector than about what that weight vector parameterizes.) Unfortunately. the differ­
ence between these two i-o functions can be large; in general it is not true that "the most
probable output corresponds to the most probable parameterU (Denker and LeCun. 1991).

This paper shows that to fmd the MAP i-o function rather than the MAP w one adds a "cor­
rection termU to conventional BP. That term biases one towards i-o functions with small
description lengths. and in particular favors feature-selection. pruning and weight-sharing.
In this that term constitutes a theoretical justification for those techniques.

Although cast in terms of neural nets. this paper·s analysis applies to any case where con­
vention is to use the MAP value of a parameter encoding Z to estimate the value of Z.

2 BACKPROP OVER 1-0 FUNCTIONS
Assume the nee s architecture is fixed. and that weight vectors w live in a Euclidean vector
space W of dimension IWI. Let X be the set of vectors x which can be loaded on the input
neurons. and 0 the set of vectors 0 which can be read off the output neurons. Assume that
the number of elements in X (lXI) is finite. This is always the case in the real world. where
measuring devices have finite accuracy. and where the computers used to emulate neural
nets are finite state machines. For similar reasons 0 is also finite in practice. However for
now assume that 0 is very large and "fine-grained". and approximate it as a Euclidean vec­
tor space of dimension 101. (This assumption usually holds with neural nets. where output
values are treated as real-valued vectors.) This assumption will be relaxed later.

Indicate the set of functions taking X to 0 by cl>. (net(w •.) is an element of cl>.) Any cI» E cl>
is an (lXI x 101)-dimensional Euclidean vector. Accordingly. densities over W are related
to densities over cl> by the usual rules for transforming densities between IWI-dimensional
and (IXI x IOI)-dimensional Euclidean vector spaces. There are three cases to consider:

1) IWI < IXIIOL In general. as one varies over all w's the corresponding i-o func-
tions net(w, .) map out a sub-manifold of cl> having lower dimension than cl>.
2) IWI > IXIIOL There are an infinite number of w's corresponding to each cI».
3) IWI = IXIIOI. This is the easiest case to analyze in detail. Accordingly I will deal
with it first, deferring discussion of cases one and two until later.

With some abuse of notation, let capital letters indicate random variables and lower case
letters indicate values of random variables. So for example w is a value of the weight vector
random variable W. Use 'p' to indicate probability densities. So for example P<l>IT<cI» I t) is
the density of the i-o function random variable cl>, conditioned on the training set random
variable T, and evaluated at the values cl> = cI» and T = t.

In general, any i-o function not expressible as net(w, .) for some w has zero probability. For
the other i-o functions, with S(.) being the multivariable Dirac delta function,

p<l>(net(w •. » = jdw' Pw(w') S(net(w', .) - net(w, .». (1)

When the mapping cl> = net(W, .) is one-to-one, we can evaluate equation (1) to get

p4>lT<net(w, .) I t) = Pwrr(w I t) / J<I>.W<w), (2)

where J<I> w(w) is the Jacobian of the W ~ cl> mapping:
•

202 Wolpert

J<I>,W(w) == I det[()<l>i / dWj lew) I = I det[d net(w, ')i / dWj] I. (3)

"net(w, .)t means the i'th component of the i-o function net(w, .). "net(w, x)" means the
vector 0 mapped by net(w, .) from the input x, and "net(w, X)k" is the k'th component of o.
So the "i" in "net(w, .)(refers to a pair of values {x, k}. Each matrix value a~ / dWj is the
partial derivative of net(w, x>t with respect to some weight, for some x and k. J<I>,w(w) can
be rewritten as detla [gij(W)], where gij(w) == ~ [(d<!>t / dWi) (d~ / dWj)] is the metric of
the W ~ ct» mapping. This form of J~ w(w) is usually more difficult to evaluate though. ,

Unfortunately, cI» = net(w, .) is not one-to-one; where J<I>,w(w) * 0 the mapping is locally
one-to-one, but there are global symmetries which ensure that more than one w corre­
sponds to each cI». (Such symmetries arise from things like permuting the hidden neurons
or changing the sign of all weights leading into a hidden neuron - see (Fefferman, 1993)
and references therein.) To circumvent this difficulty we must make a pair of assumptions.

To begin, restrict attention to Winj , those values w of the variable W for which the Jaco­
bian is non-zero. This ensures local injectivity of the map between W and ct». Given a par­
ticular w E W inj' let k be the number of w' E W inj such that net(w, .) = net(w', .). (Since
net(w,.) = net(w, .), k ~ 1.) Such a set ofk vectors form an equivalence class, {w}.

The first assumption is that for all w E W inj the size of (w) (i.e., k) is the same. This will
be the case if we exclude degenerate w (e.g .• w's with all first layer weights set to 0). The
second assumption is that for all w' and w in the same equivalence class, PWID (w I d) =
PWID (w' I d). This is usually the case. (For example, start with w' and relabel hidden neu­
rons to get a new WE (w'). If we assume the Gaussian likelihood and prior, then since
neither differs for the two w's the weight-posterior is also the same for the two w's.) Given
these assumptions, p<l>IT(net(w, .) I t) = k pWlnw I t) / J<I>,w(w). So rather than minimize the
usual cost function, L(w, t), to find the MAP ct» BP should minimize L'(w. t) == L(w, t) +
In[J~W<w)]. The In[J~w(w)] term constitutes a correction term to conventional BP. , ,

One should not confuse the correction term with the other quantities in the neural net liter­
ature which involve partial derivative matrices. As an example, one way to characterize
the "quality" of a local peak w' of a cost function involves the Hessian of that cost function
(Buntine and Weigend, 1991). The correction term doesn't directly concern the validity of
such a Hessian-based quality measure. However it does concern the validity of some
implementations of such a measure. In particular. the correction term changes the location
of the peak w'. It also suggests that a peak's quality be measured by the Hessian of
L'(w', t) with respect to cI», rather than by the Hessian of L(w', t) with respect to w. (As an
aside on the subject of Hessians, note that some workers incorrectly use Hessians when
they attempt to evaluate quantities like output-variances. See (Wolpert, 1994).)

If we stipulate that the pcI>ln cI» I t) one encounters in the real world is independent of how
one chooses to parameterize ct», then the probability density of our parameter must depend
on how it gets mapped to ct». This is the basis of the correction term. As this suggests, the
correction term won't arise if we use non-pcI>lncl» I t)-based estimators, like maximum-like­
lihood estimators. (This is a basic difference between such estimators and MAP estimators
with a uniform prior.) The correction term is also irrelevant if it we use an MAP estimate
but J~ w(w) is independent of w (as when net (w •.) depends linearly on w). And for non-,
linear net(w, .), the correction term has no effect for some non-MAP-based ways to apply
Bayesianism to neural nets, like guessing the posterior average ct» (Neal, 1993):

Bayesian Backpropagation over 1-0 Functions Rather Than Weights 203

E(ct» It) == Idct> Pcl>lnct> It) ct> = Idw PWIT(w I t) net(w, .), (4)

so one can calculate E(ct» I t) by working in W, without any concern for a correction tenn.
(Loosely speaking, the Jacobian associated with changing integration variables cancels the
Jacobian associated with changing the argument of the probability density. A formal deri­
vation - applicable even when IWI-:/: IXI x 101 - is in the appendix of (Wolpert, 1994).)

One might think that since it's independent of 1, the correction term can be absorbed into
Pw(w). Ironically, it is precisely because quantities like E(ct» I t) aren't affected by the cor-
rection tenn that this is impossible: Absorb the correction term into the prior, giving a new
prior P*w(w) == d x Pw(w) x J<I) w(w) (asterisks refers to new densities, and d is a normal-,
ization constant). Then p*<I)IT(net(w, .) I t) = pwrr(w I t). So by redefining what we call the
prior we can justify use of conventional uncorrected BP; the (new) MAP ct> corresponds to
the w minimizing L(w, t). However such a redefinition changes E(ct» I t) (amongst other
things): Idct> P*<I)IT(ct> I t) ct> = Idw P*Wlnw I t) net(w, .) -:/: Idw Pwrr(w I t) net(w, .) =
Idct> Pcl>lnct> I t) ct>. So one can either modify BP (by adding in the correction term) and leave
E(ct» I t) alone, or leave BP alone but change E(ct» I t); one can not leave both unchanged.

Moreover, some procedures involve both prior-based modes and prior-based integrals, and
therefore are affected by the correction tenn no matter how Pw(w) is redefined. For exam-
ple, in the evidence procedure (Wolpert, 1993; MacKay, 1992) one fixes the value of a
hyperparameter r (e.g., ex from the introduction) to the value 1 maximizing Pr IT(11 t).
Next one find the value s' maximizing PSIT,r (s' I t, 1) for some variable S. Finally, one
guesses the <I> associated with s'. Now it's hard to see why one should use this procedure
with S = W (as is conventional) rather than with S = ct». But with S = ct» rather than W, one
must factor in the correction term when calculating PSIT,r (s I t, 1), and therefore the
guessed ct> is different from when S = W. If one tries to avoid this change in the guessed ct>
by absorbing the correction tenn into the prior PWIr(w I y), then Pn nY I t) - which is given
by an integral involving that prior - changes. This in turn changes 1, and therefore the
guessed ct> again is different. So presuming one is more directly interested in ct» rather than
W, one can't avoid having the correction term affect the evidence procedure.

It should be noted that calculating the correction tenn can be laborious in large nets. One
should bear in mind the determinant-evaluation tricks mentioned in (Buntine and
Weigend, 1991), as well as others like the identity In[J<I),w(w)] = Tr(ln[~ / dwj]) ==
Tr(ln*[d$i / dwj n, where In*(.) is In(.) evaluated to several orders.

3 EFFECTS OF THE CORRECTION TERM
To illustrate the effects of the correction term, consider a perceptron with a single output
neuron, N input neurons and a unary input space: 0 = tanh(w . x), and x always consist of
a single one and N - 1 zeroes. For this scenario d<l>i / dwj is an N x N diagonal matrix, and
In[J<I),w(w)] = -2 ~~=l In[COSh(Wk)]. Assume the Gaussian prior and likelihood of the
introduction, and for simplicity take 2cr2 = 1. Both L(w, t) and L'(w, t) are sums of terms
each of which only concerns one weight and the corresponding input neuron. Accord­
ingly, it suffices to consider just the i' th weight and the corresponding input neuron.

Let xCi) be the input vector which has its 1 in neuron i. Let ojCi) be the output of the j'th
of the pairs in the training set with input x(i), and mi the number of such pairs. With ex = 0

204 Wolpert

(no weight decay), L(w, t) = X2(1, w), which is minimized by W'i = tanh-l [l:j~l oj(i) / mil.
If we instead try to minimize X2(t, w) + Jw.MW) though, then for low enough mi (e.g., mi .
= 1), we find that there is no minimum. The correction term pushes waway from 0, and

for low enough mi the likelihood isn't strong enough to counteract this push.

--

o o

-, -,

o -, o

Figures 1 through 3: Train using unmodified BP on training set 1, and feed input x into
the resultant net. The horizontal axis gives the output you get If t and x were still used
but training had been with modified BP, the output would have been the value on the
vertical axis. In succession, the three figures have a = .6, .4, .4, and m = 1,4, 1.

I _ .. _ - -

o I -

·1 - - _ _ - -
I I I

-, o

Figure 3.

ao

o

Figure 4: The horizontal axis is IWil. The top
curve depicts the weight decay regularizer,
aw?, and the bottom curve shows that regu­
larizer modified by the correction term. a = .2.

When weight-decay is used though, modified BP finds a solution, just like unmodified BP
does. Since the correction term "pushes out" w, and since tanh(.) grows with its argument,
a <I> found by modified BP has larger (in magnitude) values of 0 than does the correspond­
ing <I> found by unmodified BP. In addition, unlike unmodified BP, modified BP has multi­
ple extrema over certain regimes. All of this is illustrated in figures (1) through (3), which
graph the value of 0 resulting from using modified BP with a particular training set t and
input value x vs. the value of 0 resulting from using unmodified BP with t and x. Figure
(4) depicts the wi-dependences of the weight decay term and of the weight-decay term
plus the correction term. (When there's no data, BP searches for minima of those curves.)

Now consider multi-layer nets, possibly with non-unary X. Denote a vector of the compo-

Bayesian Backpropagation over 1-0 Functions Rather Than Weights 20S

nents of w which lead from the input layer into hidden neuron K by w[K)' Let x· be the
input vector consisting of all O's. Then a tanh(W[K) . x') I aWj = 0 for any j, w, and K, and
for any w, there is a row of ~I awj which is all zeroes. This in tum means that Jw,w(w) =
o for any w, which means that Winj is empty, and PWIT(' I t) is independent of the data t.
(Intuitively, this problem arises since the 0 corresponding to x· can't vary with w, and
therefore the dimension of ct> is less than IWI) So we must forbid such an all-zeroes x'. The
easiest way to do this is to require that one input neuron always be on, i.e., introduce a bias
unit. An alternative is to redefine ct> to be the functions from the set {X - (0, 0, ... , O)} to 0
rather than from the set X to O. Another alternative, appropriate when the original X is the
set of all input neuron vectors consisting of O's and 1 's, is to instead have input neuron val­
ues E {z * 0, I}. (In general z * -1 though; due to the symmetries of the tanh, for many
architectures z = -1 means that two rows of a<l>i I awj are identical up to an overall sign,
which means that Jw,w(w) = 0.) This is the solution implicitly assumed from now on.

Jw,w(w) will be small - and therefore Pw(net(w, .» will be large - whenever one can make
large changes to w without affecting, = net(w, .) much. In other words, pw(net(w, .» will
be large whenever we don't need to specify w very accurately. So the correction factor
favors those w which can be expressed with few bits. In other words, the correction factor
enforces a sort of automatic MDL (Rissanen, 1986; Nowlan and Hinton, 1994).

More generally, for any multi-layer architecture there are many "singular weights" w sin ~
W inj such that Jw.w(w sin) is not just small but equals zero exactly. Pw(w) must compen­
sate for these singularities, or the peaks of PCI)rr<, I t) won't depend on t. So we need to
have pw(w) ~ 0 as w ~ wsin' Sometimes this happens automatically. For example often
Wsin includes infinite-valued w's, since tanh'(oo) = O. Because Pw(oo) = 0 for the weight­
decay prior, that prior compensates for the infmite-w singularities in the correction term.

For other w sin there is no such automatic compensation, and we have to explicitly modify
pwCw) to avoid singularities. In doing so though it seems reasonable to maintain a "bias"
towards the wsin, that Pw(w) goes to zero slowly enough so that the values pw(net(w, .»
are "enhanced" for w near wsin' Although a full characterization of such enhanced w is not
in hand, it's easy to see that they include certain kinds of pruned nets (Hassibi and Stork,
1992), weight-shared nets (Nowlan and Hinton, 1994), and feature-selected nets.

To see that (some kinds of) pruned nets have singular weights, let w* be a weight vector
with a zero-valued weight coming out of hidden neuron K. By (1) Pw(net(w*, .» =
Jdw' Pw(w,) S(net(w', .) - net(w*, .». Since we can vary the value of each weight w*i lead­
ing into neuron K without affecting net(w*, .), the integral diverges. So w* is singUlar;
removing a hidden neuron results in an enhanced probability. This constitutes an a priori
argument in favor of trying to remove hidden neurons during training.

This argument does not apply to weights leading into a hidden neuron; Jw,w(w) treats
weights in different layers differently. This fact suggests that however pw(w) compen­
sates for the singularities in Jw.w(w), weights in different layers should be treated differ­
ently by Pw(w). This is in accord with the advice given in (MacKay, 1992).

To see that some kinds of weight-shared nets have singular weights, let w' be a weight vec­
tor such that for any two hidden neurons K and K' the weight from input neuron i to K
equals the weight from i to K', for all input neurons i. In other words, w is such that all hid-

206 Wolpert

den neurons compute identical functions of x. (For some architectures we'll actually only
need a single pair of hidden neurons to be identical.) Usually for such a situation there is a
pair of columns of the matrix ~ / awj which are exactly proportional to one another. (For
example, in a 3-2-1 architecture, with X = {z, I} 3, IWI = IXI x 101 = 8, and there are four
such pairs of columns.) This means that JfI>,W(w') = 0; w' has an enhanced probability, and
we have an a priori argument in favor of trying to equate hidden neurons during training.

The argument that feature-selected nets have singular weights is architecture-dependent,
and there might be reasonable architectures for which it fails. To illustrate the argument,
consider the 3-2-1 architecture. Let xl(k) and x2(k) with k = {I, 2,3) designate three dis-
tinct pairs of input vectors. For each k have xl (k) and x2(k) be identical for all input neu­
rons except neuron A, for which they differ. (Note there are four pairs of input vectors
with this property, one for each of the four possible patterns over input neurons B and C.)
Let w' be a weight vector such that both weights leaving A equal zero. For this situation
net(w', xl(k» = net(w', x2(k» for all k. In addition a net(w, xl(k» / awj =
a net(w, x2(k» / awj for all weights Wj except the two which lead out of A. So k = 1 gives
us a pair of rows of the matrix a~ / awj which are identical in all but two entries (one row
for Xl (k) and one for x2(k». We get another such pair of rows, differing from each other in
the exact same two entries, for k = 2, and yet another pair for k = 3. So there is a linear
combination of these six rows which is all zeroes. This means that JfI>, w(w') = O. This con­
stitutes an a priori argument in favor of trying to remove input neurons during training.

Since it doesn't favor any Pw(w), the analysis of this paper doesn't favor any pfl>(<1». How­
ever when combined with empirical knowledge it suggests certain pfl>(cj). For example,
there are functions g(w) which empirically are known to be good choices for pfl>(net(w, .»

(e.g., g(w) oc:exp[awl]). There are usually problems with such choices of Pfl>(cj) though.
For example, these g(w) usually make more sense as a prior over W than as a prior over
<1>, which would imply pfl>(net(w, .» = g(w) / J<I>W(w). Moreover it's empirically true that ,
enhanced w should be favored over other w, as advised by the correction term. So it makes
sense to choose a compromise between g(w) and g(w) / J<I>W(w). An example is pfl>(cj) oc: ,
g(w) / [A} + tanh(~ x JfI>,w(w»] for two hyperparameters A} > 0 and ~ > O.

4 BEYOND THE CASE OF BACKPROP WITH IWI = IXIIOI
When 0 does not approximate a Euclidean vector space, elements of <1> have probabilities
rather than probability densities, and P(cj) It) = jdw PWl'r(w I t) S(net(w, .), cj), (0(., .) being
a Kronecker delta function). Moreover, if 0 is a Euclidean vector space but WI > IXI 101,
then again one must evaluate a difficult integral; <1> = net(W, .) is not one-to-one so one
must use equation (1) rather than (2). Fortunately these two situations are relatively rare.

The final case to consider is IWI < IXIIOI (see section two). Let Sew) be the surface in <1>
which is the image (under net(W, .» ofW. For all <I> PfI>(cj) is either zero (when cj) Ii': S(W»
or infinite (when cj) E S(W». So as conventionally defined, "MAP cj)" is not meaningful.

One way to deal with this case is to embed the net in a larger net, where that larger net's
output is relatively insensitive to the values of the newly added weights. An alternative
that is applicable when IWI / 101 is an integer is to reduce X by removing "uninteresting"
x's. A third alternative is to consider surface densities over Sew), Ps(W)(cj), instead of vol-

Bayesian Backpropagation over 1-0 Functions Rather Than Weights 207

ume densities over <%». P«l>(e!»). Such surface densities are given by equation (2). if one uses
the metric form of J«l>,w(w). (Buntine has emphasized that the Jacobian form is not even
defined for IWI < IXIIOI. since ()cj)i / aWj is not square then (personal communication).)

As an aside, note that restricting P«l>(e!») to Sew) is an example of the common theoretical
assumption that "target functions" come from a pre-chosen "concept class". In practice
such an assumption is usually ludicrous - whenever it is made there is an implicit hope that
it constitutes a valid approximation to a more reasonable P«l>(e!»).

When decision theory is incorporated into Bayesian analysis. only rarely does it advise us
to evaluate an MAP quantity (Le.. use BP). Instead Bayesian decision theory usually
advises us to evaluate quantities like E(<%» I t) (Wolpert. 1994). Just as it does for the use of
MAP estimators. the analysis of this paper has implications for the use of such E(<%» I t)
estimators. In particular. one way to evaluate E(<%»I t) = jdw PwIT(w I t) net(w •.) is to
expand net(w •.) to low order and then approximate PWlnw I t) as a sum of Gaussians
(Buntine and Weigend. 1991). Equation (4) suggests that instead we write E(<%» I t) as
jde!» P«l>lne!» I t) e!» and approximate P«l>IT(e!» I t) as a sum of Gaussians. Since fewer approxi­
mations are used (no low order expansion of net(w •. », this might be more accurate.

Acknowledgements

Thanks to David Rosen and Wray Buntine for stimulating discussion. and to TXN and the
SF! for funding. This paper is a condensed version of (Wolpert 1994).

References

Buntine. W .• Weigend. A. (1991). Bayesian back-propagation. Complex Systems. S.p. 603.

Denker. J., LeCun, Y. (1991). Transforming neural-net output levels to probability distri­
butions. In Neural Information Processing Systems 3, R. Lippman et al. (Eds).

Fefferman, C. (1993). Reconstructing a neural net from its output. Sarnoff Research Cen­
ter TR 93-01.

Hassibi. B., and Stork, D. (1992). Second order derivatives for network pruning: optimal
brain surgeon. Ricoh Tech Report CRC-TR-9214.

MacKay, D. (1992). Bayesian Interpolation, and A Practical Framework for Backpropa­
gation Networks. Neural Computation. 4. pp. 415 and 448.

Neal, R. (1993). Bayesian learning via stochastic dynamics. In Neural Information Pro­
cessing Systems 5, S. Hanson et al. (Eds). Morgan Kaufmann.

Nowlan, S., and Hinton. G. (1994). Simplifying Neural Networks by Soft Weight-Sharing.
In Theories of Induction: Proceedings of the SFIICNLS Workshop on Formal Approaches
to Supervised Learning, D. Wolpert (Ed.). Addison-Wesley, to appear.

Rissanen, J. (1986). Stochastic complexity and modeling. Ann. Stat .• 14, p. 1080.

Wolpert, D. (1993). On the use of evidence in neural networks. In Neural I nformation Pro­
cessing Systems 5, S. Hanson et aI. (Eds). Morgan-Kauffman.

Wolpert, D. (1994). Bayesian back-propagation over i-o functions rather than weights. SF!
tech. report. ftp'ablefrom archive.cis.ohio-state.edu, as pub/neuroprose/wolpert.nips.93.Z.

