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Abstract 

This paper describes a low power analogue VLSI neural network 
called Wattle. Wattle is a 10:6:4 three layer perceptron with multi­
plying DAC synapses and on chip switched capacitor neurons fabri­
cated in 1.2um CMOS. The on chip neurons facillitate variable gain 
per neuron and lower energy/connection than for previous designs. 
The intended application of this chip is Intra Cardiac Electrogram 
classification as part of an implantable pacemaker / defibrillator sys­
tem. Measurements of t.he chip indicate that 10pJ per connection 
is achievable as part of an integrated system. Wattle has been suc­
cessfully trained in loop on parity 4 and ICEG morphology classi­
fication problems. 

1 INTRODUCTION 

A three layer analogue VLSI perceptron has been previously developed by 
[Leong and Jabri, 1993]. This chip named Kakadu uses 6 bit digital weight storage, 
multiplying DACs in the synapses and fixed value off chip resistive neurons. The 
chip described in this paper called Wattle has the same synapse arrays as Kakadu, 
however, has the neurons implemented as switched capacitors on chip. For both 
Kakadu and Wattle, analogue techniques have been favoured as they offer greater 
opportunity to achieve a low energy and small area design over standard digital 
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Figure 1: Wattle Synapse Circuit Diagram 

SYNAPSE CIRCUIT 

techniques since the transistor count for the synapse can be much lower and the 
circuits may be biased in subthreshold. Some work has been done in the low en­
ergy digital area using subthreshold and optimised threshold techniques, however 
no large scale circuits have been reported so far. [Burr and Peterson, 1991] The cost 
of using analogue techniques is however, increased design complexity, sensitivity to 
noise, offsets and component tolerances. In this paper we demonstrate that difficult 
nonlinear problems and real world problems can be trained despite these effects. 

At present, commercially available pacemakers and defibrillators use timing deci­
sion trees implemented on CMOS microprocessors for cardiac arrythmia detection 
via peak detection on a single ventricular lead. Even when atrial leads are used, In­
tra Cardiac Electrogram (ICEG) morphology classification is required to separate 
some potentially fatal rhythms from harmless ones. [Leong and J abri, 1992] The 
requirements of such a morphology classifier are: 

• Adaptable to differing morphology within and across patients. 

• Very low power consumption. ie. minimum energy used per classification. 

• Small size and high reliability. 

This paper demonstrates how this morphology classification may be done using a 
neural network architecture and thereby meet the constraints of the implantable 
arrythmia classification system. In addition, in loop training results will also be 
given for parity 4, another difficult nonlinear training problem. 
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Figure 2: Wattle Neuron Circuit Diagram 
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Figure 4: Photomicrograph of Wattle 

2 ARCHITECTURE 

Switched capacitors were chosen for the neurons on Wattle after a test chip was fab­
ricated to evaluate three neuron designs. [Coggins and Jabri, 1993] The switched 
capacitor design was chosen as it allowed flexible gain control of each neuron, in­
vestigation of gain optimisation during limited precision in loop training and the 
realisation of very high effective resistances. The wide gain range of the switched 
capacitor neurons and the fact that they are implemented on chip has allowed Wat­
tle to operate over a very wide range of bias currents from 1 pA LSB DAC current 
to 10nA LSB DAC current. 

Signalling on Wattle is fully differential to reduce the effect of common mode noise. 
The synapse is a multiplying digital to analogue convertor with six bit weights. The 
synapse is shown in figure L This is identical to the synapse used on the Kakadu 
chip [Leong and Jabri, 1993]. The MDAC synapses use a weighted current source 
to generate the current references for the weights. The neuron circuit is shown in 
figure 2. The neuron requires reset and charging clocks. The period of the charging 
clock determines the gain. Buffers are used to drive the neuron outputs off chip to 
avoid the effects of stray pad capacitances. 

Figure 3 shows a floor plan of the wattle chip . The address and data for the weights 
access is serial and is implemented by the shift registers on the boundary of the chip. 
The hidden layer multiplexor allows access to the hidden layer neuron outputs. The 
neuron demultiplexor switches the neuron clocks between the hidden and output 
layers. Figure 4 shows a photomicrograph of the wattle die. 

3 ELECTRICAL CHARACTERISTICS 

Tests have been performed to verify the operation of the weighted current source 
for the MDAC synapse arrays, the synapses, the neurons and the buffers driving the 
neuron voltages off chip. The influences of noise, offsets, crosstalk and bandwidth 
of these different elements have been measured. In particular, the system level noise 
measurement showed that the signal to noise ratio was 40dB. A summary of the 
electrical characteristics appears in table L 
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Table 1: Electrical Characteristics and Specifications 

Parameter Value Comment 
Area 2.2 x 2.2mm~ 
Technology 1.2um Nwell CMOS 2M2P standard process 
Resolution weights 6bit, gains 7bit weights on chip, gains off 
Energy per connection 43pJ all weights maximum 
LSB DAC current 200pA typical 
Feedforward delay 1.5ms @200pA, 3V supply 
Synapse Offset 5mV typical maximum 
Gain cross talk delta 20% maxImum 

A gain cross talk effect between the neurons was discovered during the electrical 
testing. The mechanism for this cross talk was found to be transients induced on the 
current source reference lines going to all the synapses as individual neuron gains 
timed out. The worst case cross talk coupled to a hidden layer neuron was found 
to be a 20% deviation from the singularly activated value. However, the training 
results of the chip do not appear to suffer significantly from this effect. 

A related effect is the length of time for the precharging of the current summation 
lines feeding each neuron due to the same transients being coupled onto the current 
source when each neuron is active. The implication of this is an increase in energy 
per classification for the network due to the transient decay time. However, one of 
the current reference lines was available on an outside pin, so the operation of the 
network free of these transients could also be measured. For this design, including 
the transient conditions, an energy per connection of 43pJ can be achieved. This 
may be reduced to 10pJ by modifying the current source to reduce transients and 
neglecting the energy of the buffers. This is to be compared with typical digital 
lOnJ per connection and analogue of 60pJ per connection appearing in the literature. 
[Delcorso et. al., 1993], Table 1. 

4 TRAINING BOTH GAINS AND WEIGHTS 

A diagram of the system used to train the chip is shown in figure 5. The training 
software is part of a package called MUME [J abri et. al., 1992], which is a multi 
module neural network simulation environment. Wattle is interfaced to the work 
station by Jiggle, a general purpose analogue and digital chip tester developed by 
SEDAL. Wattle, along with gain counter circuitry, is mounted on a separate daugh­
ter board which plugs into Jiggle. This provides a software configurable testing 
environment for Wattle. In loop training then proceeds via a hardware specific 
module in MUME which writes the weights and reads back the analogue output of 
the chip. Wattle can then be trained by a wide variety of algorithms available in 
MUME. 

Wattle has been trained in loop using a variation on the Combined Search Algorithm 
(CSA) for limited precision training. [Xie and Jabri, 1992] (Combination of weight 
perturbation and axial random search). The variation consists of training the gains 


