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Abstract 

We present a Mean Field Theory method for locating two­
dimensional objects that have undergone rigid transformations. 
The resulting algorithm is a form of coarse-to-fine correlation 
matching. We first consider problems of matching synthetic point 
data, and derive a point matching objective function. A tractable 
line segment matching objective function is derived by considering 
each line segment as a dense collection of points, and approximat­
ing it by a sum of Gaussians. The algorithm is tested on real images 
from which line segments are extracted and matched. 

1 Introduction 

Assume that an object in a scene can be viewed as an instance of the model placed 
in space by some spatial transformation, and object recognition is achieved by dis­
covering an instance of the model in the scene. Two tightly coupled subproblems 
need to be solved for locating and recognizing the model: the correspondence prob­
lem (how are scene features put into correspondence with model features?), and the 
localization problem (what is the transformation that acceptably relates the model 
features to the scene features?). If the correspondence is known, the transformation 
can be determined easily by least squares procedures. Similarly, for known trans­
formation, the correspondence can be found by aligning the model with the scene, 
or the problem becomes an assignment problem if the scene feature locations are 
jittered by noise. 
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Several approaches have been proposed to solve this problem. Some tree-pruning 
methods [1, 3] make hypotheses concerning the correspondence by searching over 
a tree in which each node represents a partial match. Each partial match is then 
evaluated through the pose that best fits it. In the generalized Hough transform or 
equivalently template matching approach [7, 3], optimal transformation parameters 
are computed for each possible pairing of a model feature and a scene feature, and 
these "optimal" parameters then "vote" for the closest candidate in the discretized 
transformation space. 

By contrast with the tree-pruning methods and the generalized Hough transform, we 
propose to formulate the problem as an objective function and optimize it directly 
by using Mean Field Theory (MFT) techniques from statistical physics, adapted as 
necessary to produce effective algorithms in the form of analog neural networks. 

2 Point Matching 

Consider the problem of locating a two-dimensional "model" object that is believed 
to appear in the "scene". Assume first that both the model and the scene are 
represented by a set of "points" respectively, {xd and {Ya}. The problem is to 
recover the actual transformation (translation and rotation) that relates the two 
sets of points. It can be solved by minimizing the following objective function 

Ematch(Mia, 0, t) = L Miallxi - ReYa - tll 2 

ia 
(1) 

where {Mia} = M is a Ofl-valued "match matrix" representing the unknown cor­
respondence, Re is a rotation matrix with rotation angle 0, and t is a translation 
vector. 

2.1 Constraints on match variables 

We need to enforce some constraints on correspondence (match) variables Mia; 
otherwise all Mia = a in (1). Here, we use the following constraint 

LMia = N, 'iMia ~ 0; (2) 
ia 

implying that there are exactly N matches among all possible matches, where N 
is the number of the model features. Summing over permutation matrices obeying 
this constraint, the effective objective function is approximately [5]: 

F(O, t, (3) = -.!. L e-.8l1 x .-R8 y .. -tIl 2
, 

13 ia 

which has the same fixed points as 

1 
Epenalty(M, 0, t) = Ematch(M, 0, t) + - L Mia (log Mia - 1), 

13 ia 

(3) 

(4) 

where Mia is treated as a continuous variable and is subject to the penalty function 
x(logx-l). 



Two-Dimensional Object Localization by Coarse-ta-Fine Correlation Matching 987 

Figure 1: Assume that there is only translation between the model and the scene, 
each containing 20 points. The objective functions at at different temperatures 
(,8- 1 ): 0.0512 (top left), 0.0128 (top right) , 0.0032 (bottom left) and 0.0008 (bot­
tom right), are plotted as energy surfaces of x and y components of translation . 

Now, let j3 = 1/2u2 and write 

Epoint(O, t) = L e-~lIx,-R8y(1-tIl2. (5) 
ia 

The problem then becomes that of maximizing Epoint , which in turn can be interpre­
tated as minimizing the Euclidean distance between two Gaussian-blurred images 
containing the scene points Xi and a transformed version of the model points Ya. 
Tracking the local maximum of the objective function from large u to small u, as in 
deterministic annealing and other continuation methods, corresponds to a coarse­
to-fine correlation matching. See Figure 1 for a demonstration of a simpler case in 
which only translation is applied to the model. 

2.2 The descent dynamics 

A gradient descent dynamics for finding the saddle point of the effective objective 
function F is 

ia 

o -I\, L mia(Xi - R 9Ya - t)t(R9+~Ya) , (6) 
ia 
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where mia = (Mia}/3 = e-/3llx .-R 8y,,-tIl 2 is the "soft correspondence" associated 
with Mia. Instead of updating t by descent dynamics, we can also solve for t 
directly. 

3 The Vernier Network 

Though the effective objective is non-convex over translation at low temperatures, 
its dependence on rotation is non-convex even at relatively high temperatures. 

3.1 Hierachical representation of variables 

We propose overcoming this problem by applying Mean Field Theory (M FT) to a 
hierachical representation of rotation resulting from the change of variables [4] 

B-1 

o L Xb(Ob + (h), (h E [-te, te], (7) 
b=O 

where te = 7r /2B, Ob = (b + l)~ are the constant centers of the intervals, and (h 
are fine-scale "vernier" variabfes. The Xb'S are binary variables (so Xb E {O, I}) that 
satisfy the winner-take-all (WTA) constraint Lb Xb = 1. 

The essential reason that this hierarchical representation of 0 has fewer spurious 
local minima than the conventional analog representation is that the change of 
variables also changes the connectivity of the network's state space: big jumps in 0 
can be achieved by local variations of X. 

3.2 Vernier optimization dynamics 

Epoint can be transformed as (see [6, 4]) 1 

Epoint(O, t) 
~vbl 
~ E(LXb(Ob +Ob),2:XVt b) 

b b 

LXbE(Ov + Ob, tb) 
b 

1 Notation: Coordinate descent with 2-phase clock 'IlIa(t): 

a 

• EB for clocked sum 

• x for a clamped variable 

• x A for a set of variables to be optimized analytically 

• (v, u)H for Hopfield/Grossberg dynamics 

(8) 

• E(x, y)fJJ for coordinate descent/ascent on x, then y, iterated if necessary. Nested 
angle brackets correspond to nested loops. 
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Figure 2: Shown here is an example of matching a 20-point model to a scene with 
66.7% spurious outliers. The model is represented by circles. The set of square dots 
is an instance of the model in the scene. All other dots are outliers. From left to 
right are configurations at the annealing steps 1, 10, and 51, respectively. 

MFT 
~ [~ A 1 ~ sinh(tub) 

~ XbE(th + Vb, tb) + ,8 ~(UbVb -log t ) 
b b 

+ WTA(x,,8)] (((v, u)H, t A), XA)$ (9) 

Each bin-specific rotation angle Vb can be found by the following fixed point equa­
tions 

a 

ia 

(10) 

The algorithm is illustrated in Figure 2. 

4 Line Segment Matching 

In many vision problems, representation of images by line segments has the ad­
vantage of compactness and subpixel accuracy along the direction transverse to the 
line. However, such a representation of an object may vary substantially from image 
to image due to occlusions and different illumination conditions. 

4.1 Indexing points on line segements 

The problem of matching line segments can be thought of as a point matching 
problem in which each line segment is treated as a dense collection of points. Assume 
now that both the scene and the model are represented by a set of line segments 
respectively, {sil and {rna} . Both the model and the scene line segments are 
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Figure 3: Approximating e(t) by a sum of 3 Gaussians. 

represented by their endpoints as Si = (pi, p~) and rna = (qa, q~), where Pi, p~, 
and qa, q~ are the endpoints of the ith scene segment and the ath model segment, 
respectively. The locations of the points on each scene segment and model segments 
can be parameterized as 

Xi = Si(U) = 
Ya = IDa(v) = 

Pi + u(p~ - Pi), U E [0,1] and 

qa + v(q~ - qa), v E [0,1]. 

(ll) 

(12) 

N ow the model points and the scene points can be though of as indexed by i = 
(i, u) and a = (a, v). Using this indexing, we have Li ex Li Ii Jol du and La ex 

La1aJoi dv, where Ii = Ilpi-P~II andla = IIqa-q~ll· The point matching objective 
function (5) can be specialized to line segment matching as [5] 

Eseg((}, t) = L hla t (I e- ~IIS.(u)-Rem,,(v)-tIl2 du dv. 
ia Jo Jo 

(13) 

As a special case of point matching objective function, (13) can readily be trans­
formed to the vernier network previously developed for point matching problem. 

4.2 Gaussian sum approximation 

Note that, as in Figure 3 and [5], 

e (t) -_ {I if t E [0: 1] ~ 1 (Ck - t)2 
o otherWIse ~ ~ Ak exp -"2 (72 

k~I k 

(14) 

where by numerical minimization of the Euclidean distance between these two func­
tions of t, the parameters may be chosen as Al = A3 = 0.800673, A2 = 1.09862, 
(71 = (73 = 0.0929032, (72 = 0.237033, C1 = 1 - C3 = 0.1l6807, and C2 = 0.5. 

Using this approximation, each finite double integral in (13) can be replaced by 

3 1+00 1+00 __ 1_(Ck_U)2 - 1 (cr-v)2 1 R t 2 

k~l AkAl -00 -00 e 2"'~ e ~ e- 2,;2l1 s .(u)+ em,,(v)- II du dv. (15) 

Each of these nine Gaussian integrals can be done exactly. Defining 

Viakl = Si(Ck) - Rema(cl) - t 

Pi = pi - Pi, qa = Re(q~ - qa), 

(16) 

(17) 
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Figure 4: The model line segments, which are transformed with the optimal pa­
rameter found by the matching algorithm, are overlayed on the scene image. The 
algorithm has successfully located the model object in the scene. 

(15) becomes 

1 vlaklu2 + (Viakl X �p�d�2�u�~� + (Viakl X Qa)2uf 
X exp -"2 (u2 + f>;un(u2 + �Q�~�u�f�)� - �U�~�U�;�(�f�>�i� . Qa)2 

(18) 

as was calculated by Garrett [2, 5]. From the Gaussian sum approximation, we get 
a closed form objective function which can be readily optimized to give a solution 
to the line segment matching problem. 

5 Results and Discussion 

The line segment matching algorithm described in this paper was tested on scenes 
captured by a CCD camera producing 640 x 480 images, which were then processed 
by an edge detector. Line segments were extracted using a polygonal approximation 
to the edge images. The model line segments were extracted from a scene containing 
a canonically positioned model object (Figure 4 left). They were then matched to 
that extracted from a scene containing differently positioned and partially occluded 
model object (Figure 4 nght). The result of matching is shown in Figure 5. 

Our approach is based on a scale-space continuation scheme derived from an appli­
cation of Mean Field Theory to the match variables. It provides a means to avoid 
trapping by local extrema and is more efficient than stochastic searches such as 
simulated annealing. The estimation of location parameters based on continuously 
improved "soft correspondences" and scale-space is often more robust than that 
based on crisp (but usually inaccurate) correspondences. 

The vernier optimization dynamics arises from an application of Mean Field The­
ory to a hierarchical representation of the rotation, which turns the original uncon­
strained optimization problem over rotation e into several constrained optimization 
problems over smaller e intervals. Such a transformation results in a Hopfield-style 




