Developing Population Codes By
Minimizing Description Length

Richard S. Zemel Geoffrey E. Hinton
CNL, The Salk Institute Department of Computer Science
10010 North Torrey Pines Rd. University of Toronto
La Jolla, CA 92037 Toronto M5S 1A4 Canada
Abstract

The Minimum Description Length principle (MDL) can be used to
train the hidden units of a neural network to extract a representa-
tion that is cheap to describe but nonetheless allows the input to
be reconstructed accurately. We show how MDL can be used to
develop highly redundant population codes. Each hidden unit has
a location in a low-dimensional implicit space. If the hidden unit
activities form a bump of a standard shape in this space, they can
be cheaply encoded by the center of this bump. So the weights from
the input units to the hidden units in an autoencoder are trained
to make the activities form a standard bump. The coordinates of
the hidden units in the implicit space are also learned, thus allow-
ing flexibility, as the network develops a discontinuous topography
when presented with different input classes. Population-coding in
a space other than the input enables a network to extract nonlinear
higher-order properties of the inputs.

Most existing unsupervised learning algorithms can be understood using the Min-
imum Description Length (MDL) principle (Rissanen, 1989). Given an ensemble
of input vectors, the aim of the learning algorithm is to find a method of coding
each input vector that minimizes the total cost, in bits, of communicating the input
vectors to a receiver. There are three terms in the total description length:

e The code-cost is the number of bits required to communicate the code
that the algorithm assigns to each input vector.

11

12

Zemel and Hinton

e The model-cost is the number of bits required to specify how to recon-
struct input vectors from codes (e.g., the hidden-to-output weights).

e The reconstruction-error is the number of bits required to fix up any
errors that occur when the input vector is reconstructed from its code.

Formulating the problem in terms of a communication model allows us to derive an
objective function for a network (note that we are not actually sending the bits).
For example, in competitive learning (vector quantization), the code is the identity
of the winning hidden unit, so by limiting the system to H units we limit the
average code-cost to at most log, H bits. The reconstruction-error is proportional
to the squared difference between the input vector and the weight-vector of the
winner, and this is what competitive learning algorithms minimize. The model-cost
is usually ignored.

The representations produced by vector quantization contain very little information
about the input (at most log, H bits). To get richer representations we must allow
many hidden units to be active at once and to have varying activity levels. Principal
components analysis (PCA) achieves this for linear mappings from inputs to codes.
It can be viewed as a version of MDL in which we limit the code-cost by only
having a few hidden units, and ignoring the model-cost and the accuracy with which
the hidden activities must be coded. An autoencoder (see Figure 2) that tries to
reconstruct the input vector on its output units will perform a version of PCA if the
output units are linear. We can obtain novel and interesting unsupervised learning
algorithms using this MDL approach by considering various alternative methods of
communicating the hidden activities. The algorithms can all be implemented by
backpropagating the derivative of the code-cost for the hidden units in addition to
the derivative of the reconstruction-error backpropagated from the output units.

Any method that communicates each hidden activity separately and independently
will tend to lead to factorial codes because any mutual information between hidden
units will cause redundancy in the communicated message, so the pressure to keep
the message short will squeeze out the redundancy. In (Zemel, 1993) and (Hinton
and Zemel, 1994), we present algorithms derived from this MDL approach aimed
at developing factorial codes. Although factorial codes are interesting, they are not
robust against hardware failure nor do they resemble the population codes found in
some parts of the brain. Our aim in this paper is to show how the MDL approach
can be used to develop population codes in which the activities of hidden units are
highly correlated. For a more complete discussion of the details of this algorithm,
see (Zemel, 1993).

Unsupervised algorithms contain an implicit assumption about the nature of the
structure or constraints underlying the input set. For example, competitive learning
algorithms are suited to datasets in which each input can be attributed to one of
a set of possible causes. In the algorithm we present here, we assume that each
input can be described as a point in a low-dimensional continuous constraint space.
For instance, a complex shape may require a detailed representation, but a set of
images of that shape from multiple viewpoints can be concisely represented by first
describing the shape, and then encoding each instance as a point in the constraint
space spanned by the viewing parameters. Our goal is to find and represent the
constraint space underlying high-dimensional data samples.

Developing Population Codes by Minimizing Description Length

size
. .
.
& .
® []
[]
[] . .
.
o
® o
.
] ® ° o
- [] L]
.

orientation

Figure 1: The population code for an instance in a two-dimensional implicit space.
The position of each blob corresponds to the position of a unit within the population,
and the blob size corresponds to the unit’s activity. Here one dimension describes
the size and the other the orientation of a shape. We can determine the instantiation
parameters of this particular shape by computing the center of gravity of the blob
activities, marked here by an “X”.

1 POPULATION CODES

In order to represent inputs as points drawn from a constraint space, we choose
a population code style of representation. In a population code, each code unit is
associated with a position in what we call the implicit space, and the code units’
pattern of activity conveys a single point in this space. This implicit space should
correspond to the constraint space. For example, suppose that each code unit
is assigned a position in a two-dimensional implicit space, where one dimension
corresponds to the size of the shape and the second to its orientation in the image
(see Figure 1). A population of code units broadly-tuned to different positions can
represent any particular instance of the shape by their relative activity levels.

This example illustrates that population codes involve three quite different spaces:
the input-vector space (the pixel intensities in the example); the hidden-vector space
(where each hidden, or code unit entails an additional dimension); and this third,
low-dimensional space which we term the implicit space. In a learning algorithm
for population codes, this implicit space is intended to come to smoothly represent
the underlying dimensions of variability in the inputs, i.e., the constraint space.
For instance, the Kohonen (1982) algorithm defines the implicit space topology
through fixed neighborhood relations, and the algorithm then manipulates hidden-
vector space so that neighbors in implicit space respond to similar inputs.

This form of coding has several computational advantages, in addition to its signif-
icance due to its prevalence in biological systems. Population codes contain some
redundancy and hence have some degree of fault-tolerance, and they reflect under-
lying structure of the input, in that similar inputs are mapped to nearby implicit
positions. They also possess a hyperacuity property, as the number of implicit
positions that can be represented far exceeds the number of code units.

13

14

Zemel and Hinton

2 LEARNING POPULATION CODES WITH MDL

Autoencoders are a general way of addressing issues of coding, in which the hidden
unit activities for an input are the codes for that input which are produced by the
input-hidden weights, and in which reconstruction from the code is done by the
hidden-output mapping. In order to allow an autoencoder to develop population
codes for an input set, we need some additional structure in the hidden layer that
will allow a code vector to be interpreted as a point in implicit space. While most
topographic-map formation algorithms (e.g., the Kohonen and elastic net (Durbin
and Willshaw, 1987) algorithms) define the topology of this implicit space by fixed
neighborhood relations, in our algorithm we use a more explicit representation.
Each hidden unit has weights coming from the input units that determine its activity
level. But in addition to these weights, it has another set of adjustable parameters
that represent its coordinates in the implicit space. To determine what implicit
position is represented by a vector of hidden activities, we can average together the
implicit coordinates of the hidden units, weighting each coordinate vector by the
activity level of the unit.

Suppose, for example, that each hidden unit 1s connected to an 8x8 retina and has
2 implicit coordinates that represent the size and orientation of a particular kind of
shape on the retina, as in our earlier example. If we plot the hidden activity levels
in the implicit space (not the input space), we would like to see a bump of activity
of a standard shape (e.g., a Gaussian) whose center represents the instantiation
parameters of the shape (Figure 2 depicts this for a 1D implicit space). If the
activities form a perfect Gaussian bump of fixed variance we can communicate
them by simply communicating the coordinates of the mean of the Gaussian; this
is very economical if there are many less implicit coordinates than hidden units.

It is important to realize that the activity of a hidden unit is actually caused by the
input-to-hidden weights, but by setting these weights appropriately we can make
the activity match the height under the Gaussian in implicit space. If the activity
bump is not quite perfect, we must also encode the bump-error—the misfit between
the actual activity levels and the levels predicted by the Gaussian bump. The
cost of encoding this misfit is what forces the activity bump in implicit space to
approximate a Gaussian.

The reconstruction-error is then the deviation of the output from the input. This
reconstruction ignores implicit space; the output activities only depend on the vector
of hidden activities and weights.

2.1 The objective function
Currently, we ignore the model-cost, so the description length to be minimized is:

Et — Bt + Rt

H N
> (b —b4)?/2Ve +) (af — ck)?/2Vk (1)
j:l k=1

Il

where a,b, c are the activities of units in the input, hidden, and output layers,
respectively, Vg and Vg are the fixed variances of the Gaussians used for coding the

Developing Population Codes by Minimizing Description Length

NETWORK IMPLICIT SPACE (v = 1)
Output
(1...N) Activity (b) p
----- 0
: hest-fit

Hidden { Claussian
(1...H) ' i
Input. - O () OO0 '
(L.N) : [| ol | l L

X3 X Xn X3z ;l.r Xq4 Xa X7 Xs

Position (x)

Figure 2: Each of the H hidden units in the autoencoder has an associated position
in implicit space. Here we show a 1D implicit space. The activity b% of each hidden
unit j on case t is shown by a solid line. The network fits the best Gaussian to this
pattern of activity in implicit space. The predicted activity, b}, of unit j under this

t

Gaussian is based on the distance from X; to the mean p"; it serves as a target for

be.

bump-errors and the reconstruction-errors, and the other symbols are explained in
the caption of Figure 2.

We compute the actual activity of a hidden unit, b}, as a normalized exponential
of its total input.! Note that a unit’s actual activity is independent of its position
in implicit space. Its expected activity is its normalized value under the predicted
Gaussian bump:

H
b = exp(=(xj — 1n)?/20%)/ 3 exp(~(x; — u*)*/207) (2)

where o is the width of the bump, which we assume for now is fixed throughout
training.

We have explored several methods for computing the mean of this bump. Simply
computing the center of gravity of the representation units’ positions, weighted

by their activity, produces a bias towards points in the center of implicit space.

Instead, on each case, a separate minimization determines ,ut; it is the position in

implicit space that minimizes B® given {xj,b}}. The network has full inter-layer

connectivity, and linear output units. Both the network weights and the implicit
coordinates of the hidden units are adapted to minimize E.

lb; = exp(net;)/ Eiz exp(net}), where net; is the net input into unit j on case t.

15

16 Zemel and Hinton

Unit 18 - Epoch 0 Unit 18 - Bpoch 23

0.08

0.2

0.06
0.15

Activity0.04 Activity 0.1

0.0 0.05

e
g

Y position % position © ' ¥ position

10

Figure 3: This figure shows the receptive field in implicit space for a hidden unit.
The left panel shows that before learning, the unit responds randomly to 100 differ-
ent test patterns, generated by positioning a shape in the image at each point in a
10x10 grid. Here the 2 dimensions in implicit space correspond to z and y positions.
The right panel shows that after learning, the hidden unit responds to objects in
a particular position, and its activity level falls off smoothly as the object position
moves away from the center of the learned receptive field.

3 EXPERIMENTAL RESULTS

In the first experiment, each 8x8 real-valued input image contained an instance of a
simple shape in a random (z, y)-position. The network began with random weights,
and each of 100 hidden units in a random 2D implicit position; we trained it using
conjugate gradient on 400 examples. The network converged after 25 epochs. Each
hidden unit developed a receptive field so that it responded to inputs in a limited
neighborhood that corresponded to its learned position in implicit space (see Figure
3). The set of hidden units covered the range of possible positions.

In a second experiment, we also varied the orientation of the shape and we gave
each hidden unit three implicit coordinates. The network converged after 60 epochs
of training on 1000 images. The hidden unit activities formed a population code
that allowed the input to be accurately reconstructed.

A third experiment employed a training set where each image contained either a
horizontal or vertical bar, in some random position. The hidden units formed an
interesting 2D implicit space in this case: one set of hidden units moved to one
corner of the space, and represented instances of one shape, while the other group
moved to an opposite corner and represented the other (Figure 4). The network
was thus able to squeeze a third dimension (i.e., which shape) into the 2D implicit
space. This type of representation would be difficult to learn in a Kohonen network;
the fact that the hidden units learn their implicit coordinates allows more flexibility
than a system in which these coordinates are fixed in advance.

Developing Population Codes by Minimizing Description Length

Implicit Space (Epoch) Implicit Space (Epoch 120)
Y
680 ——T—— 71— --r—--T- T -t 680 T T — T T *posn
b4 b4
600F , x X x ?Ku . ook X B %y _:mtm.v
o .x x mean.H
ss0| x X oX Toyo0 i ofa o
3°° o ° Iqaﬁn X e ' 5.50 x® B@%’%f&n
500 x, of & F oo o | 5.00}- tox o b X
X X N x | Dgh o X0t o *
450 x X x*) * 4.50 0 g i X"
9° oaX ¥ % N xmn '] ,‘B ox ®
40 R M) S 400} ST
350 x: g x X x ° « 3.50L . . L X
3000 8¢ " o, o x ¥ *x % x Xx
° ‘o J:" ° &n » "E x 300} *
2501 % : 0 g x
X o oxs o X noB® % 250[* & L
2.00 v o® @ x?f'ii r’éu" # o] X 00 x& X S yx L x
1.50 X ,ﬁ ‘l! L 9 o * m *x
0% o0 o o° % w ox B ¥ 1.50 x‘ > ?&o&’ i
1.00} ke ﬁ”, 5.}(% ® \B i)\'*n n ° ﬁ: x
0.50 o @ x ? * X ° " x 2 oygdi
I I N S 0.50 S T
000 %o x X X x
ke - L 1 £ ol L. il Lo cplipncad 1 _1 X
000 100 200 300 400 500 6.00 000 100 200 300 400 500 600

Figure 4: This figure shows the positions of the hidden units and the meansin the 2D
implicit space before and after training on the horizontal /vertical task. The means
in the top right of the second plot all correspond to images containing vertical bars,
while the other set correspond to horizontal bar images. Note that some hidden
units are far from all the means; these units do not play a role in the coding of the
input, and are free to be recruited for other types of input cases.

4 RELATED WORK

This new algorithm bears some similarities to several earlier algorithms. In the
experiments presented above, each hidden unit learns to act as a Radial Basis
Function (RBF) unit. Unlike standard RBFs, however, here the RBF activity serves
as a target for the activity levels, and is determined by distance in a space other
than the input space.

Our algorithm is more similar to topographic map formation algorithms, such as the
Kohonen and elastic-net algorithms. In these methods, however, the population-
code is in effect formed in input space. Population coding in a space other than
the input enables our networks to extract nonlinear higher-order properties of the
inputs.

In (Saund, 1989), hidden unit patterns of activity in an autoencoder are trained to
form Gaussian bumps, where the center of the bump is intended to correspond to
the position in an underlying dimension of the inputs. In addition to the objective
functions being quite different in the two algorithms, another crucial difference
exists: in his algorithm, as well as the other earlier algorithms, the implicit space
topology is statically determined by the ordering of the hidden units, while units in
our model learn their implicit coordinates.

17

18

Zemel and Hinton

5 CONCLUSIONS AND CURRENT DIRECTIONS

We have shown how MDL can be used to develop non-factorial, redundant repre-
sentations. The objective function is derived from a communication model where
rather than communicating each hidden unit activity independently, we instead
communicate the location of a Gaussian bump in a low-dimensional implicit space.
If hidden units are appropriately tuned in this space their activities can then be
inferred from the bump location.

Our method can easily be applied to networks with multiple hidden layers, where
the implicit space is constructed at the last hidden layer before the output and
derivatives are then backpropagated; this allows the implicit space to correspond
to arbitrarily high-order input properties. Alternatively, instead of using multiple
hidden layers to extract a single code for the input, one could use a hierarchical
system in which the code-cost is computed at every layer.

A limitation of this approach (as well as the aforementioned approaches) is the
need to predefine the dimensionality of implicit space. We are currently working
on an extension that will allow the learning algorithm to determine for itself the
appropriate number of dimensions in implicit space. We start with many dimensions

but include the cost of specifying ,ut in the description length. This obviously
depends on how many implicit coordinates are used. If all of the hidden units have
the same value for one of the implicit coordinates, it costs nothing to communicate
that value for each bump. In general, the cost of an implicit coordinate depends
on the ratio between its variance (over all the different bumps) and the accuracy
with which it must be communicated. So the network can save bits by reducing
the variance for unneeded coordinates. This creates a smooth search space for
determining how many implicit coordinates are needed.

Acknowledgements

This research was supported by grants from NSERC, the Ontario Information Technology
Research Center, and the Institute for Robotics and Intelligent Systems. Geoffrey Hinton
is the Noranda Fellow of the Canadian Institute for Advanced Research. We thank Peter
Dayan for helpful discussions.

References

Durbin, R. and Willshaw, D. (1987). An analogue approach to the travelling salesman
problem. Nature, 326:689-691.

Hinton, G. and Zemel, R. (1994). Autoencoders, minimum description length, and
Helmholtz free energy. To appear in Cowan, J.D., Tesauro, G., and Alspector,
J. (eds.), Advances in Neural Information Processing Systems 6. San Francisco,
CA: Morgan Kaufmann.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:59-69.

Rissanen, J. (1989). Stochastic Complezity in Statistical Inquiry. World Scientific Pub-
lishing Co., Singapore.

Saund, E. (1989). Dimensionality-reduction using connectionist networks. IEFE
Transactions on Pattern Analysis and Machine Intelligence, 11(3):304-314.

Zemel, R. (1993). A Minimum Description Length Framework for Unsupervised Learn-
ing. Ph.D. Thesis, Department of Computer Science, University of Toronto.

