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Abstract 
A neurocomputer was implemented using radial basis functions and a 
combination of analog and digital VLSI circuits. The hybrid system 
uses custom analog circuits for the input layer and a digital signal 
processing board for the hidden and output layers. The system combines 
the advantages of both analog and digital circuits. featuring low power 
consumption while minimizing overall system error. The analog circuits 
have been fabricated and tested, the system has been built, and several 
applications have been executed on the system. One application 
provides significantly better results for a remote sensing problem than 
have been previously obtained using conventional methods. 

1.0 Introduction 

This paper describes a neurocomputer development system that uses a radial basis 
function as the transfer function of a neuron rather than the traditional sigmoid function. 
This neurocOOlputer is a hybrid system which has been implemented with a combination 
of analog and digital VLSI technologies. It offers the low-power advantage of analog 
circuits operating in the subthreshold region and the high-precision advantage of digital 
circuits. The system is targeted for applications that require low-power operation and use 
input data in analog form, particularly remote sensing and portable computing 
applications. It has already provided significantly better results for a remote sensing 
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climate problem than have been previously obtained using conventional methods. 

Figure 1 illustrates a radial basis functioo (RBF) network. Radial basis functions have 
been used to solve mapping and function estimation problems with positive results 
(Moody and Darken. 1989; Lippman, 1991). When coupled with a dynamic neuron 
allocation algorithm such as Platt's RANN (platt. 1991). RBF networks can usually be 
trained much more quickly than a traditional sigmoidal. back-propagation network. 

RBF networlcs have been implemented with completely-analog (platt, Anderson and Kirk. 
1993), c<mpletely-digital (Watkins. Chau and Tawel, Nov .• 1992). and with hybrid analogi 
digital approaches (Watkins. Chau and Tawel, Oct., 1992). The hybrid approach is optimal 
for applications which require low power consumption and use input data that is naturally 
in the analog domain while also requiring the high precision of the digital domain. 

2.0 System Architecture and Benefits 

Figure 2 shows the mapping of the RBF network to hardware. Figure 3 shows the 
neurocomputer development system. The system consists of a PC controller, a DSP board 
with a Motorola 56000 DSP chip and a board with analog multipliers. The benefits of the 
hybrid approach are lower-cost parallelism than is possible with a completely-digital 
system, and more precise computation than is possible with a completely-analog system. 

The parallelism is available for low cost in terms of area and power, when the inputs are in 
the analog domain. When comparing a single analog multiplier to a 100bit fixed point 
digital multiplier, the analog cell uses less than one-quarter the area and approximately 
five orders of magnitude less power. When comparing an array of analog multipliers to a 
Motorola 56000 DSP chip, 1000 Gilbert multipliers can fit in an area about half the size of 
the DSP chip, while consuming .003% of the power. 

The restriction of requiring analog inputs is placed on the system. because if the inputs 
were digital, the high cost of D to A conversion would remove the low cost benefit of the 
system. lbis restriction causes the neurocomputer to be taIgeted for applications using 
inputs that are in the analog domain, such as remote sensing applications that use 
microwave or infrared sensors and speech recognitioo applications that use analog filters. 

The hybrid system reduces the overall system error when compared with a completely­
analog solution. The digital circuits compute the hidden and output layers with 24 bits of 
precision while analog circuits are limited to about 8 bits of precision. Also the RANN 
algorithm requires a large range of width variatioo for the Gaussian function and this is 
more easily achieved with digital computation. Completely analog solutions to this 
problem are severely limited by the voltage rails of the chip. 

3.0 Circuits 

Several different analog circuit approaches were explored as possible implementations of 
the network. Mter the dust settled, we chose to implement only the input layer with analog 
circuits because it offers the greatest opportunity for parallelism, providing parallel 
performance benefits at a low cost in terms of area and power. The input layer requires 
more than 0 UP) computations (where N is the number of neurons). while the hidden and 
output layers require only 0 (N) computations (because there is one hidden layer 
computatioo per neuron and the number of outputs is either one or very small). 
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The analog circuits used in the input layer are Gilbert multipliers (Mead. 1989). 'The 
circuits were fabricated with 2.0 micron. double-poly, P-well. CMOS technology. The 
Gilbert cell performs the operation of multiplying two voltage differences: (Vi-V2)x(V3-
V4). In this system. Vi =V3 and V2=V4. which causes the circuit to compute the square of 
the difference between a stored weight and the input. The current outputs of the Gilbert 
cells in a row are wired together to sum their currents. giving a sum of squared errors. This 
current is converted to a voltage. fed to an A to D converter and then passed to the DSP 
board where the hidden and output layers are computed. The radial basis function 
(Gaussian) of the hidden layer is computed by using a lookup table. The system uses the 
fast multiply/accumulate operation of the DSP chip to compute the output layer. 

4.0 Applications 

The low-power feature of the hybrid system makes it attractive for applications where 
power consumption is a prime consideration, such as satellite-based applications and 
portable computing (using battery power). The neurocomputer has been applied to three 
problems: a remote sensing climate problem. the Mackey-Glass chaotic time series 
estimation and speech phoneme recognitim. The remote sensing application falls into the 
satellite category. The Mackey-Glass and speech recognition applications are potentially 
portable. Systems fa these applications are likely to have inputs in the analog domain 
(eliminating the need for D to A conversion. as already discussed) making it feasible to 
execute them on the hybrid neurocomputer. 

4.1 The Remote Sensing Application 

The remote sensing problem is an inverse mapping problem that uses microwave energy 
in different bands as input to predict the water vapor content of the atmosphere at different 
altitudes. Water vapor content is a key parameter for predicting weather in the tropics and 
mid-latitudes (Kakar and Lambrigtsen. 1984). The application uses 12 inputs and 1 output. 
The system input is naturally in analog form. the result of amplified microwave signals, so 
no D to A conversion of input data is required. Others have used neural networks with 
success to perform a similar inverse mapping to predict the temperature gradient of the 
atmosphere CMotteler et al .. 1993). Section 5 details the improved results of the RBF 
network over conventional methods. Since water vapor content is a very important 
compment of climate models. improved results in predicted water vapor content means 
improved climate models. 

Remote sensing problems require satellite hardware where power consumptim is always a 
major constraint.The low-power nature of the hybrid network would allow the network to 
be placed on board a satellite. With future EOS missions requiring several thousand 
sensors. the on-board network would reduce the bandwidth requirements of the data being 
sent back to earth. allowing the reduced water vapor content data to be transmitted rather 
than the raw sensor data. This data bandwidth reduction could be used either to send back 
more meaningful data to further improve climate models. or to reduce the amount of data 
transmitted. saving energy. 

4.2 The Mackey-Glass Application 

The Mackey-Glass chaotic time series application uses several previous time sample 
values to predict the current value of a time series which was generated by the Mackey­
Glass delay-difference equation. It was used because it has proved to be difficult for 
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sigmoidal neural networks (platt. 1991). The applicatioo uses 4 inputs and 1 output. The 
Mackey-Glass time series is representative of time series found in medical applications 
such as detecting arrhythmias in heartbeats. It could be advantageous to implement this 
application with portable hardware. 

4.3 The Speech Phoneme Recognition Application 

The speech phoneme recognition problem used the same data as Waibel (Waibel et ai .• 
1989) to learn to recognize the acoustically similar phonemes of b. d and g. The 
application uses 240 inputs and 3 outputs. The speech phoneme recognition problem 
represents a sub problem of the more difficult continuous speech recognition problem. 
Speech recognition applications also represent opportunities for portable computing. 

5.0 Results 

5.1 The Remote Sensing Application 

Using the RBF neural network 00 the remote sensing climate problem produced 
significantly better results than had been previously obtained using conventional statistical 
methods (Kakar and Lambrigtsen. 1984). The input layer of the RBF network was 
implemented in two different ways: 1) it was simulated with 32-bit floating point precision 
to represent a digital input layer. and 2) it was implemented with the analog Gilbert 
multipliers as the input layer. Both implementations produced similar results. 

At an altitude corresponding to 570 mb pressure, the RBF neural network with a digital 
input layer produced results with .33 absolute rms error vs. .42 rms error for the best 
results using conventional methods. This is an improvement of 21 %. Figure 4 shows the 
plot of retrieved vs. actual water vapor content for both the RBF network and the 
conventional method. Using the hybrid neurocomputer with the analog input layer for the 
data at 570 mb pressure produced results with .338 rms error. This is an improvement of 
19.5% over the conventional method. Using the analog input layer produced nearly as 
much improvement as a completely-digital system. demonstrating the feasibility of 
placing the network on board a satellite. Similar results were obtained for other altitudes. 

The RBF network also was compared to a sigmoidal network using back propagation 
learning enhanced with line-search capability (to automatically set step-size). Both 
networks used eight neurons in the hidden layer. As Figure 5 shows. the RBF network 
learned much faster than the sigmoidal network. 
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Figure 4: Comparison of Retrieved vs. Actual Water Vapor Content for 570 mb Pressure 
for RBF Network and Conventional Statistical Method 
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Figure 6: Comparison of Learning Curves for RBF and Sigmoidal Networks for Mackey­
Glass Application 

5.2 The Mackey-Glass Application 

The RBF network was not compared to any non-neural network method for the Mackey­
Glass time series estimation. It was only compared to a traditional sigmoidal networlc 
using back propagation learning enhanced with line search. Both networks used four neu­
rons. As Figure 6 shows. applying the RBF neural network to the Mackey-Glass chaotic 
time series estimation produced much faster learning than the sigmoidal network. The 
RBF network with a digital input layer and the RBF hybrid network with an analog input 
layer both produced similar results in dropping to an rms error of about .025 after only 5 
minutes of training on a PC using a 486 CPU. 

Using the digital input layer. the RBF network reached a minimum absolute rms error of 
.017. while the sigmoidal network reached a minimum absolute rms error of .025. This is 
an improvement of 32% over the sigmoidal network. Using the hybrid neurocomputer 
with the analog input layer produced a minimum absolute rms error of .022. This is an 
improvement of 12% over the sigmoidal network 
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5.3 The Speech Phoneme Recognition Application 

The RBF network was not compared to any non-neural network method for the speech 
phooeme recognition problem. It was only compared to Waibel's Tme Delay Neural 
Network (IDNN) (Waibel et al .. 1989). The IDNN uses a topology matched to the time­
varying nature of speech with two hidden layers of eight and three neurons respectively. 
The RBF network used a single hidden layer with the number of neurons varying between 
eight and one hundred. 

The IDNN achieved a 98% accuracy on the test set discriminating between the phooemes 
b. d and g. The RBF network achieved over 99% accuracy in training. but was only able to 
achieve an 86% accuracy on the test set. To obtain better results. it is clear that the 
topology of the RBF network needs to be altered to more closely match Waibel's IDNN. 
However. this topology will complicate the VLSI implementation. 

5.4 The Feasibility of Using the Analog Input Layer 

One potential problem with using an analog input layer is that every individual hybrid 
RBF neurocomputer might need to be trained on a problem. rather than being able to use a 
common set of weights obtained from another RBF neurocomputer (which had been 
previously trained). This potential problem exists because every analog circuit is unique 
due to variation in the fabrication process. A set of experiments was designed to test this 
possibility. 

The remote sensing application and the Mackey-Glass application were trained and tested 
two different ways: 1) hardware-trainedlhardware-tested. that is. the analog input layer 
was used for both training and testing; 2) software-trainedlhardware-tested. that is the 
analog input layer was simulated with 32-bit floating point precision for training and then 
the analog hardware was used for testing . . The hardwarelhardware results provided a 
benchmark. The softwarelhardware results demonstrated the feasibility of having a 
standard set of weights that are not particular to a given set of analog hardware. For both 
the remote sensing and the Mackey-Glass applications. the rms error performance was 
only slightly degraded by using weights learned during software simulation. The remote 
sensing results degraded by only .Oll in terms of absolute rms error. and the Mackey­
Glass results degraded by only .002 in terms of absolute rms error. The results of the 
experiment indicate that each individual hybrid RBF neurocomputer only needs to be 
calibrated. not trained. 

6.0 Conclusions 

A low-power. hybrid analog/digital neurocomputer development system was constructed 
using custom hardware. The system implements a radial basis function (RBF) network 
and is targeted for applications that require low power consumption and use analog data as 
their input. particularly remote sensing and portable applications. Several applications 
were executed and results were obtained for a remote sensing application that are superior 
to any previous results. Comparison of the results of a completely-digital simulation of the 
RBF network and the hybrid analog/digital RBF network demonstrated the feasibility of 
the hybrid approach. 
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