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We describe an extension to the Mixture of Experts architecture for 
modelling and controlling dynamical systems which exhibit multi­
ple modes of behavior. This extension is based on a Markov process 
model, and suggests a recurrent network for gating a set of linear 
or non-linear controllers. The new architecture is demonstrated to 
be capable of learning effective control strategies for jump linear 
and non-linear plants with multiple modes of behavior. 

1 Introduction 

Many stationary dynamic systems exhibit significantly different behaviors under 
different operating conditions. To control such complex systems it is computation­
ally more efficient to decompose the problem into smaller subtasks, with different 
control strategies for different operating points. When detailed information about 
the plant is available, gain scheduling has proven a successful method for designing a 
global control (Shamma and Athans, 1992). The system is partitioned by choosing 
several operating points and a linear model for each operating point. A controller 
is designed for each linear model and a method for interpolating or 'scheduling' the 
gains of the controllers is chosen. 

The control problem becomes even more challenging when the system to be con­
trolled is non-stationary, and the mode of the system is not explicitly observable. 
One important, and well studied, class of non-stationary systems are jump linear 
systems of the form: ~~ = A(i)x + B(i)u. where x represents the system state, 
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u the input, and i, the stochastic parameter that determines the mode of the sys­
tem, is not explicitly observable. To control such a system, one must estimate the 
mode of the system from the input-output behavior of the plant and then choose 
an appropriate control strategy. 

For many complex plants, an appropriate decomposition is not known a priori. One 
approach is to learn the decomposition and the piecewise solutions in parallel. The 
Mixture of Experts architecture (Nowlan 1990, Jacobs et a11991) was proposed as 
one approach to simultaneously learning a task decomposition and the piecewise 
solutions in a neural network context. This architecture has been applied to con­
trol simple stationary plants, when the operating mode of the plant was explicitly 
available as an input to the gating network (Jacobs and Jordan 1991). 

There is a problem with extending this architecture to deal with non-stationary 
systems such as jump linear systems. The original formulation of this architecture 
was based on an assumption of statistical independence oftraining pairs appropriate 
for classification tasks. However, this assumption is inappropriate for modelling the 
causal dependencies in control tasks. We derive an extension to the original Mixture 
of Experts architecture which we call the Mixture of Controllers. This extension 
is based on an nth order Markov model and can be implemented to control non­
stationary plants. The new derivation suggests the importance of using recurrence 
in the gating network, which then learns t.o estimate the conditional state occupancy 
for sequences of outputs. The power of the architecture is illustrated by learning 
control and switching strategies for simple jump linear and non-stationary non­
linear plants. The modified recurrent architecture is capable of learning both the 
control and switching for these plants. while a non-recurrent architecture fails to 
learn an adequate control. 

2 Mixtures of Controllers 

The architecture of the system is shown in figure 1. Xt denotes the vector of inputs 
to the controller at time t and Yt is the corresponding overall control output. The 
architecture is identical to the Mixture of Experts architecture, except that the 
gating network has become recurrent, receiving its outputs from the previous time 
step as part of its input. The underlying statistical model, and corresponding train­
ing procedure for the Mixture of Controllers, is quite different from that originally 
proposed for the Mixture of Experts. 

We assume that the system we are interested in controlling has N different modes 
or states l and we will have a distinct control l\·h for each mode. In general we are 
interested in the likelihood of producing a sequence of control outputs Yl, ... , YT 
given a sequence of inputs Xl, ... , XT. This likelihood can be computed as: 

I1L.:P(YtI St = k,Xt)P(St = kIYl .. ·Yt-I,Xl·· .xd 
k 

(1) 

IThis is an idealization and if N is unknown it is safest to overestimate it. 
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Figure 1: The Mixture of Controllers architecture. MI, M2 and M3 
are feedforward networks implementing controls appropriate for different 
modes of the system to be controlled. The gating network (Sel.) is 
recurrent and uses a softmax non-linearity to compute the weight to 
be assigned to each of the control out.puts. The weighted sum of the 
controls is then used as the overall control for the plant. 

where bf represents the probability of producing the desired control Yt given the 
input Xt and that the system is in state k. If represents the conditional probability 
of being in state k given the sequence of inputs and outputs seen so far. In order 
to make the problem tractable, we assume that this conditional probability is com­
pletely determined by the current input to the system and the previous state of the 
system: 

I: = fW'Y(Xt, {it-I})' 
Thus we are assuming that our control can be approximated by a Markov process, 
and since we are assuming that the mode of the system is not explicitly available, this 
becomes a hidden Markov model. This Markov assumption leads to the particular 
recurrent gating architecture used in the Mixture of Controllers. 

If we make the same gaussian assumptions used in the original Mixture of Experts 
model, we can define a gradient descent procedure for maximizing the log of the 
likelihood given in Equation 1. Assume 

b~ = 1 e-(Yt-y~)2/2(72 
y'2iu 

and define f3f = P(YT,"" Yt\Sk, XT,···, Xt), Lt = Lk f3f,f and 
j3k k 

R:=~. Lt 

Then the derivative of the likelihood with respect to the output of one of the con­
trollers becomes: 

ologL r k( k) a k = l\ Rt Yt - Yt . 
Yt 

(2) 
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The derivative of the likelihood with respect to a weight in one of the control net­
works is computed by accumulating partial derivatives over the sequence of control 
outputs: 

For the gating network, we once again use a softmax non-linearity so: 

k 
k exp gt 

It = .. 
Lj eXP9~ 

Then 
a log L _ '""'(Rk _ k) k a k - ~ t I't It-I' 

9t t 

(3) 

(4) 

The derivatives for the weights in the gating network are again computed by accu­
mulating partial derivatives over output sequences: 

(5) 

Equations (2) and (4) turn out to be quite similar to those derived for the original 
Mixture of Experts architecture. The primary difference is the appearance of (3; 
rather than bf in the expression for R:. The appearance of /3 is a direct. result of 
the recurrence introduced into the gating network. {3 can be computed as part of 
a modified back propagation through time algorithm for the gating network using 
the recurrence: 

where 

/3: = b: + L W kjf3f+l 
j 

O;f+l 
Wkj = olf 

(6) 

Equation (6) is the analog of the backward pass in the forward-backward algorithm 
for standard hidden Markov models. 

In the simulations reported in the next section, we used an online gradient descent 
procedure which employs an approximation for (3f which uses only one step of back 
propagation through time. This approximation did not appear to significantly affect 
the final performance of the recurrent architecture. 

3 Results 

The performances of the recurrent Mixture of Controllers and non-recurrent Mixture 
of Experts were compared on three control tasks: a first order jump linear system, 
a second order jump linear system, and a tracking task that required two non­
linear controllers. The object of the first two jump-linear tasks was to control a 
plant which switched randomly between two linear systems. The resulting overa.ll 
systems were highly non-linear. In both the first. and second order cases it was 
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Figure 2: Left: Training convergence of Mixtures of Experts and Mix­
tures of Controllers on first order jump linear system. The vertical axis 
is average squared error over training sequences and horizontal axis is 
the number of training sequences seen. Right: Sample test trajectory 
of first order jump linear system under control of Mixture of Controllers. 
The system switches states at times 50 and 100. 

desired to drive all plant outputs to zero (zero-forcing control). Neither the first or 
second order systems could be successfully controlled by a single linear controller. 

For both jump-linear tasks, the architecture of the MixtUre of Controllers and Mix­
ture of Experts consisted of two linear experts, and a one layer gating network. 
The input to the experts was the plant output at the previous time step, while the 
input to the gating network was the ratio of the plant outputs at the two preceding 
time steps. An ideal linear controller was designed for each mode of the system. 
Training targets were derived from outputs of the appropriate ideal controller, us­
ing the known mode of the system for the training trajectories. The parameters 
of the gating and control networks were updated after each pass through sample 
trajectories which contained several state transitions. 

The recurrent Mixture of Controllers could be trained to successfully control the 
first order jump linear system (figure 2), and once trained generalized successfully 
to novel test trajectories. The non-recurrent Mixture of Experts failed to learn even 
the training data for the first order jump linear system (note the high asymptote 
for the training error without recurrence in figure 2). The recurrent Mixture of 
Controllers was also able to learn to control the second order jump linear system 
(figure 3), however, it was necessary to teacher force the system during the first 
5000 epochs of training by providing the true mode of the system as an extra 
input to the gating network. This extra input was removed at epoch 5000 and the 
error initially increases dramatically but the system is able to eventually learn to 
control the second order jump linear system autonomously. Note that the Mixture of 
Experts system is actually able to learn a successful control even more rapidly than 
the Mixture of Controllers when the additional teacher input is provided, however 
learning again completely fails once this input is removed at epoch 5000 (figure 3). 



724 Cacciatore and Nowlan 

Second Order Model Training Error Second Order Model Trajectory 
Aecurren I Ccnlroler 

eoo .----~--~--_, 

'000 

3000 

-oulpUtl 
- - Ideal t 
---- oulpU12 

- - ldul2 

TIme 

Figure 3: Left: Training convergence of Mixt.ures of Experts and Mix­
tures of Controllers on second order jump linear system. Right: Sample 
test trajectory of second order jump linear system under control of Mix­
tUre of Controllers. The system again switches states at times 50 and 
100. 

In both first and second order cases, the trained Mixture of Controllers is able to 
control the system in both modes of system behavior, and to deted mode changes 
automatically. The difficulty in designing a control for a jump linear system usually 
lies in identifying the state of the system. No explicit law describing how to identify 
and switch between control modes is necessary to train the Mixture of Controllers, 
as this is learned automatically as a byproduct of learning to successfully control 
the system. 

Performance of the Mixture of Controllers and the Mixture of Experts was also 
compared on a more complex task requiring a non-linear control law in each mode. 
The task wa:s to control the trajectory of a ship to track an object traveling in a 
straight line, or flee from an object having a random walk trajectory (figure 4). 
There is a high degree of task interference between the controls appropriate during 
the two modes of object behaviors. The ship dynamics were t.aken from Miller and 
Sutton (1990). 

For both the Mixture of Controllers and the Mixture of Experts two experts were 
used. The experts received past and present measurements of the object bearing, 
distance, velocity, and the ship heading and turn rate. The controllers specified the 
desired turn rate of the ship. A one layer gating network was used which received 
the velocity of the object as input. 

Training targets were produced from ideal controllers designed for each object be­
havior. The ideal controller for the random walk behavior produced a turn rate that 
headed directly away from the object. The ideal controller for intercepting the ob­
ject used future information about object position to determine the turn rate which 
would lead to the closest possible intercept point. Both ideal controllers made use 
of information not available to the Mixture of Experts or Mixture of Controllers. 

The Mixture of Controllers and the Mixture of Experts were trained on sequences of 
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Figure 4: (a) Actual and desired trajectories of ship under control of 
Mixture of Experts while attempting to intercept target. (b) Gating 
unit activities as a function of time for trajectory in (a). 

trajectories where the object changed behaviors multiple times. The weights of the 
networks were updated after each pass through the trajectories. The input to the 
gating net in this ta.sk provided more inst antaneous information about the mode of 
object behavior than was provided in the jump linear tasks. As a result , the non­
recurrent Mixture of Experts was able to achieve a minimum level of performance 
on the overall task. The recurrent Mixture of Controllers performed much better . 

The differences between two architectures are revealed by examining the gating net­
work outputs . Without recurrence , the Mixture of Experts gating network could 
not determine the state of the object with certainty, and compromised by select­
ing a combination of the correct and incorrect control (figure 4b) . Since the two 
controls are incompatible, this uncertainty degrades the performance of the overall 
controller . With recurrence in the ga.ting network, the Mixture of Controllers is able 
to determine the target state with greater certainty by integrating information from 
many observations of object behavior . The sharper decisions about which control 
to use greatly improve tracking performance (figure 5). 

We explored the ability of the Mixture of Controllers to learn the dynamics of 
switching by training on trajectories where the object switched behavior with vary­
ing frequency. The gating network trained on an object that switched behaviors 
infrequently was sluggish to respond to transitions, but more noise tolerant than the 
gating network trained on a frequently switching object. Thus, the gating network 
is able to incorporate the frequency of transition into its state model. 

4 Discussion 

\Ve have described an extension to the Mixture of Experts architecture for modelling 
and controlling dynamical systems which exhibit multiple modes of behavior. The 
algorithm we have presented for updating the parameters of the model is a simple 
gradient descent procedure . Application of the technique to large scale problems 
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Figure 5: (a) Actual and desired trajectories of ship under control of 
Mixture of Controllers while attempting to intercept target. (b) Gating 
unit activities as a function of time for trajectory in (a). Note that these 
are much less noisy than the activities seen in figure 4(b). 

may require the development of faster converging update algorithms, perhaps based 
on the generalized EM (GEM) family of algorithms, or a variant of the iterative 
reweighted least squares procedure proposed by Jordan and Jacobs (1993) for hier­
archies of expert networks. Additional work is also required to establish the stability 
and convergence rate of the algorithm for use in adaptive control applications. 
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