
Bounds on the complexity of recurrent
neural network implementations of finite

state machines

Bill G. Horne
NEC Research Institute

4 Independence Way
Princeton, NJ 08540

Don R. Hush
EECE Department

University of New Mexico
Albuquerque, NM 87131

Abstract

In this paper the efficiency of recurrent neural network implementa­
tions of m-state finite state machines will be explored. Specifically,
it will be shown that the node complexity for the unrestricted case
can be bounded above by 0 (fo) . It will also be shown that the
node complexity is 0 (y'm log m) when the weights and thresholds
are restricted to the set {-I, I}, and 0 (m) when the fan-in is re­
stricted to two. Matching lower bounds will be provided for each
of these upper bounds assuming that the state of the FSM can be
encoded in a subset of the nodes of size rlog m 1.

1 Introduction

The topic of this paper is understanding how efficiently neural networks scale to
large problems. Although there are many ways to measure efficiency, we shall be
concerned with node complexity, which as its name implies, is a calculation of the
required number of nodes. Node complexity is a useful measure of efficiency since
the amount of resources required to implement or even simulate a recurrent neural
network is typically related to the number of nodes. Node complexity can also
be related to the efficiency of learning algorithms for these networks and perhaps
to their generalization ability as well. We shall focus on the node complexity of
recurrent neural network implementations of finite state machines (FSMs) when
the nodes of the network are restricted to threshold logic units.

359

360 Home and Hush

In the 1960s it was shown that recurrent neural networks are capable of imple­
menting arbitrary FSMs. The first result in this area was due to Minsky [7], who
showed that m-state FSMs can be implemented in a fully connected recurrent neu­
ral network. Although circuit complexity was not the focus of his investigation it
turns out that his construction, yields 0 (m) nodes. This construction was also
guaranteed to use weight values limited to the set {I, 2}. Since a recurrent neural
network with k hard-limiting nodes is capable of representing as many as 2k states,
one might wonder if an m-state FSM could be implemented by a network with
log m nodes. However, it was shown in [1] that the node complexity for a standard

fully connected network is n ((m log m)1/3). They were also able to improve upon

Minsky's result by providing a construction which is guaranteed to yield no more
than 0 (m3/4) nodes. In the same paper lower bounds on node complexity were in­
vestigated as the network was subject to restrictions on the possible range of weight
values and the fan-in and fan-out of the nodes in the network. Their investigation
was limited to fully connected recurrent neural networks and they discovered that
the node complexity for the case where the weights are restricted to a finite size set
is n (y'm log m) . Alternatively, if the nodes in the network were restricted to have a
constant fan-in then the node complexity becomes n (m) . However, they left open
the question of how tight these bounds are and if they apply to variations on the
basic architecture. Other recent work includes investigation of the node complexity
for networks with continuous valued nonlinearities [14]. However, it can also be
shown that when continuous nonlinearities are used, recurrent neural networks are
far more powerful than FSMs; in fact, they are Turing equivalent [13].

In this paper we improve the upper bound on the node complexity for the un­
restricted case to 0 (yIm). We also provide upper bounds that match the lower
bounds above for various restrictions. Specifically, we show that a node complexity
of 0 (y'm log m) can be achieved if the weights are restricted to the set {-I, I} , and
that the node complexity is 0 (m) for the case when the fan-in of each node in the
network is restricted to two. Finally, we explore the possibility that implementing
finite state machines in more complex models might yield a lower node complexity.
Specifically, we explore the node complexity of a general recurrent neural network
topology, that is capable of simulating a variety of popular recurrent neural net­
work architectures. Except for the unrestricted case, we will show that the node
complexity is no different for this architecture than for the fully connected case if
the number of feedback variables is limited to rlog m 1, i.e. if the state of the FSM
is encoded optimally in a subset of the nodes. We leave it as an open question if a
sparser encoding can lead to a more efficient implementation.

2 Background

2.1 Finite State Machines

FSMs may be defined in several ways. In this paper we shall be concerned with
Mealy machines, although our approach can easily be extended to other formulations
to yield equivalent results.

Bounds on the Complexity of Recurrent Neural Network Implementations 361

Definition 1 A Mealy machine is a quintuple M = (Q, qo, E, d, <1», where Q is a
finite set of states; qo is the initial state ; E is the input alphabet; d is the output
alphabet; and <I> : Q x E - Q x d is the combined transition and output function.

o

Throughout this paper both the input and output alphabets will be binary (i.e. E =
d = {a, I}) . In general, the number of states, m = IQI, may be arbitrary. Since any
element of Q can be encoded as a binary vector whose minimum length is pog m 1 ,
the function <I> can be implemented as a boolean logic function of the form

<I> : {a, l}pogm1+l _ {a, l}pogm1+l . (1)

The number, N M , of different minimal FSMs with m states will be used to determine
lower bounds on the number of gates required to implement an arbitrary FSM in a
recurrent neural network. It can easily be shown that (2m)m :S NM [5]. However,
it will be convenient to reexpress N M in terms of n = flog m 1 + 1 as follows

(2)

2.2 Recurrent Neural Networks

The fundamental processing unit in the models we wish to consider is the perceptron,
which is a biased, linearly weighted sum of its inputs followed by a hard-limiting
nonlinearity whose output is zero if its input is negative and one otherwise. The
fan-in of the perceptron is defined to be the number of non-zero weights. When the
values of Xi are binary (as they are in this paper) , the perceptron is often referred
to as a threshold logic unit (TL U).

A count of the number of different partially specified threshold logic functions, which
are threshold logic functions whose values are only defined over v vertices of the
unit hypercube, will be needed to develop lower bounds on the node complexity
required to implement an arbitrary logic function . It has been shown that this
number, denoted L~, is [15]

2vn

L~:S -,-.
n.

(3)

As pointed out in [10], many of the most popular discrete-time recurrent neural
network models can be implemented as a feedforward network whose outputs are
fed back recurrently through a set of unit time delays. In the most generic version of
this architecture, the feed forward section is lower triangular, meaning the [th node is
the only node in layer I and receives input from all nodes in previous layers (including
the input layer). A lower triangular network of k threshold logic elements is the
most general topology possible for a feedforward network since all other feedforward
networks can be viewed as a special case of this network with the appropriate weights
set equal to zero. The most direct implementation of this model is the architecture
proposed in [11] . However, many recurrent neural network architectures can be cast
into this framework. For example, fully connected networks [3] fit this model when
the the feedforward network is simply a single layer of nodes. Even models which
appear very different [2, 9] can be cast into this framework.

362 Home and Hush

3 The unrestricted case

The unrestricted case is the most general, and thus explores the inherent power of
recurrent neural networks. The unrestricted case is also important because it serves
as a baseline from which one can evaluate the effect of various restrictions on the
node complexity.

In order to derive an upper bound on the node complexity of recurrent neural
network implementations of FSMs we shall utilize the following lemma, due to
Lupanov [6]. The proof of this lemma involves a construction that is extremely
complex and beyond the scope of this paper.

Lemma 1 (Lupanov, 1973) Arbitrary boolean logic functions with x inputs and
y outputs can be implemented in a network of perceptrons with a node complexity
of

o (J x ~~:g y) .
o

Theorem 1 Multilayer recurrent neural networks can implement FSMs having m
states with a node complexity of 0 (.Jffi) . 0

Proof: Since an m-state FSM can be implemented in a recurrent neural network
in which the multilayer network performs a mapping of the form in equation (1),
then using n = m = flog m 1 + 1, and applying Lemma 1 gives an upper bound of
O(.Jffi). Q.E.D.

Theorem 2 Multilayer recurrent neural networks can implement FSMs having m
states with a node complexity of n (fo) if the number of unit time delays is flog m 1.

o

Proof: In order to prove the theorem we derive an expression for the maximum
number of functions that a k-node recurrent neural network can compute and com­
pare that against the minimum number of finite state machines. Then we solve for
k in terms of the number of states of the FSM.

Specifically, we wish to manipulate the inequality

2(n-l)2 n - 2 < n! (k - 1) krr-l 2n(n+i~+1
- n - 1 . (n + z)! ,=0

(a) (b)

where the left hand side is given in equation (2), (a) represents the total number of
ways to choose the outputs and feedback variables of the network, and (b) repre­
sents the total number of logic functions computable by the feed forward section of
the network, which is lower triangular. Part (a) is found by simple combinatorial
arguments and noting that the last node in the network must be used as either
an output or feedback node. Part (b) is obtained by the following argument: If
the state is optimally encoded in flog m 1 nodes, then only flog m 1 variables need

Bounds on the Complexity of Recurrent Neural Network Implementations 363

to be fed back. Together with the external input this gives n = rlog m 1 + 1 local
inputs to the feedforward network. Repeated application of (3) with v = 2n yields
expression (b).

Following a series of algebraic manipulations it can easily be shown that there exists
a constant c such that

n2n < ck2n.

Since n = flog ml + 1 it follows that k = f2 (fo). Q.E.D.

4 Restriction on weights and thresholds

All threshold logic functions can be implemented with perceptrons whose weight
and threshold values are integers. It is well known that there are threshold logic
functions of n variables that require a perceptron with weights whose maximum
magnitude is f2(2n) and O(nn/2) [8]. This implies that if a perceptron is to be
implemented digitally, the number of bits required to represent each weight and
threshold in the worst case will be a super linear function of the fan-in. This is
generally undesirable ; it would be far better to require only a logarithmic number
of bits per weight, or even better, a constant number of bits per weight. We will be
primarily be interested in the most extreme case where the weights are limited to
values from the set {-I , I}.

In order to derive the node complexity for networks with weight restrictions, we
shall utilize the following lemma, proved in [4].

Lemma 2 Arbitrary boolean logic functions with x inputs and y outputs can be
implemented in a network ofperceptrons whose weights and thresholds are restricted
to the set {-I, I} with a node complexity of e (Jy2 x) . 0

This lemma is not difficult to prove , however it is beyond the scope of this paper.
The basic idea involves using a decomposition of logic functions proposed in [12].
Specifically, a boolean function f may always be decomposed into a disjunction of
2r terms of the form XIX2. ' . Xr fi(X r +1 , .. . , x n) , one for each conjunction of the
first r variables, where Xj represents either a complemented or uncomplemented
version of the input variable Xj and each Ii is a logic function of the last n - r
variables. This expression can be implemented directly in a neural network. With
negligible number of additional nodes, the construction can be implemented in such
a way that all weights are either -lor 1. Finally, the variable r is optimized to
yield the minimum number of nodes in the network.

Theorem 3 Multilayer recurrent neural networks that have nodes whose weights
and thresholds are restricted to the set {-I , I} can implement FSMs having m
states with a node complexity of 0 (Jm log m) . 0

Proof: Since an m-state FSM can be implemented in a recurrent neural network
in which the multilayer network performs a mapping of the form in equation (1),
then using n = m = flog m 1 + 1, and applying Lemma 2 gives an upper bound of
o (Jmlogm) . Q.E.D.

364 Home and Hush

Theorem 4 Multilayer recurrent neural networks that have nodes whose weights
and thresholds are restricted to a set of size IWI can implement FSMs having m

states with a node complexity of n (if the number of unit time delays is

flogml. 0

Proof: The proof is similar to the proof of Theorem 2 which gave a lower bound
for the node complexity required in an arbitrary network of threshold logic units.
Here, the inequality we wish to manipulate is given by

)
k-l

k - 1 II IWln+i+ 1.
n-I

i=O

(a) (b)

where the left hand side and (a) are computed as before and (b) represents the
maximum number of ways to configure the nodes in the network when there are
only IWI choices for each weight and threshold. Following a series of algebraic
manipulations it can be shown that there exists a constant c such that

n2n ::; ck 2 log IWI.

Since n = pog m 1 + 1 it follows that k = n (mlogm)
loglWI . Q.E.D.

Clearly, for W = {-I, I} this lower bound matches the upper bound in Theorem 3.

5 Restriction on fan-in

A limit on the fan-in of a perceptron is another important practical restriction.
In the networks discussed so far each node has an unlimited fan-in. In fact, in
the constructions described above, many nodes receive inputs from a polynomial
number of nodes (in terms of m) in a previous layer. In practice it is not possible
to build devices that have such a large connectivity. Restricting the fan-in to 2, is
the most severe restriction, and will be of primary interest in this paper.

Once again, in order to derive the node complexity for restricted fan-in, we shall
utilize the following lemma, proved in [4].

Lemma 3 Arbitrary boolean logic functions with x inputs and y outputs can be
implemented in a network of perceptrons restricted to fan-in 2 with a node com­
plexityof

(y2X)
e x + logy .

o

This proof of this lemma is very similar to the proof of Lemma 2. Here Shannon's
decomposition is used with r = 2 to recursively decompose the logic function into
a set of trees, until each tree has depth d. Then, all possible functions of the last
n - d variables are implemented in an inverted tree-like structure, which feeds into
the bottom of the trees. Finally, d is optimized to yield the minimum number of
nodes.

Bounds on the Complexity of Recurrent Neural Network Implementations 365

Theorem 5 Multilayer recurrent neural networks that have nodes whose fan-in is
restricted to two can implement FSMs having m states with a node complexity of
Oem) 0

Proof: Since an m-state FSM can be implemented in a recurrent neural network
in which the multilayer network performs a mapping of the form in equation (1),
then using n = m = rlog m 1 + 1, and applying Lemma 3 gives an upper bound of
o (m). Q.E.D.

Theorem 6 Multilayer recurrent neural networks that have nodes whose fan-in is
restricted to two can implement FSMs having m states with a node complexity of
n (m) if the number of unit time delays is rlog m 1. 0

Proof: Once again the proof is similar to Theorem 2, which gave a lower bound
for the node complexity required in an arbitrary network of threshold logic units.
Here, the inequality we need to solve for is given by

2(n-1)2'-' :s n! (~:= ~) D. 14 (n t i)

,----_V~----A~----_V~----~
(a) (b)

where the left hand side and (a) are computed as before and (b) represents the max­

imum number of ways to configure the nodes in the network. The term (n t i)

is used since a node in the ith layer has n + i possible inputs from which two are
chosen. The constant 14 represents the fourteen possible threshold logic functions
of two variables. Following a series of algebraic manipulations it can be shown that
there exists a constant c such that

n2n ~ ck logk

Since n = rlog m 1 + 1 it follows that k = n (m) .

6 Summary

Q.E.D.

In summary, we provide new bounds on the node complexity of implementing FSMs
with recurrent neural networks. These upper bounds match lower bounds devel­
oped in [1] for fully connected recurrent networks when the size of the weight set
or the fan-in of each node is finite. Although one might speculate that more com­
plex networks might yield more efficient constructions, we showed that these lower
bounds do not change for restrictions on weights or fan-in, at least when the state
of the FSM is encoded optimally in a subset of flog m 1 nodes. When the network
is unrestricted, this lower bound matches our upper bound. We leave it as an open
question if a sparser encoding of the state variables can lead to a more efficient
implementation.

One interesting aspect of this study is that there is really not much difference
in efficiency when the network is totally unrestricted and when there are severe
restrictions placed on the weights. Assuming that our bounds are tight, then there

366 Home and Hush

is only a y'log m penalty for restricting the weights to either -1 or 1. To get some
idea for how marginal this difference is consider that for a finite state machine with
m = 18 x 1018 states, y'log m is only eight!

A more detailed version of this paper can be found in [5].

References

[1] N. Alon, A.K. Dewdney, and T.J. Ott . Efficient simulation of finite automata
by neural nets. JACM, 38(2):495-514, 1991.

[2] A.D. Back and A.C. Tsoi. FIR and I1R synapses, a new neural network archi­
tecture for time series modeling. Neural Computation, 3(3):375-385, 1991.

[3] J.J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. Nat. Acad. Sci., 79:2554-2558, 1982.

[4] B.G. Horne and D.R. Hush. On the node complexity of neural networks. Tech­
nical Report EECE 93-003, Dept. EECE, U. New Mexico, 1993.

[5] B.G. Horne and D.R. Hush. Bounds on the complexity of recurrent neural
network implementations of finite state machines. Technical Report EECE
94-001, Dept. EECE, U. New Mexico, 1994.

[6] O.B. Lupanov. The synthesis of circuits from threshold elements. Problemy
Kibernetiki, 26:109-140, 1973.

[7] M. Minsky. Computation: Finite and infinite machines. Prentice-Hall, 1967.

[8] S. Muroga. Threshold Logic and Its Applications. Wiley, 1971.

[9] K.S. Narendra and K. Parthasarathy. Identification and control of dynamical
systems using neural networks. IEEE Trans. on Neural Networks, 1:4-27, 1990.

[10] O. Nerrand et al. Neural networks and nonlinear adaptive filtering: Unifying
concepts and new algorithms. Neural Computation, 5(2):165-199, 1993.

[11] A.J. Robinson and F. Fallside. Static and dynamic error propagation networks
with application to speech coding. In D.Z. Anderson, editor, Neural Informa­
tion Processing Systems, pages 632-641, 1988.

[12] C. Shannon. The synthesis of two-terminal switching circuits. Bell Sys. Tech.
1., 28:59-98, 1949.

[13] H. Siegelmann and E.D. Sontag. Neural networks are universal computing
devices. Technical Report SYCON-91-08, Rutgers Ctr. for Sys. and Cont.,
1991.

[14] H.T. Siegelmann, E.D. Sontag, and C.L. Giles. The complexity of language

recognition by neural networks. In Proc. IFIP 12th World Compo Cong., pages
329-335, 1992.

[15] R.O. Winder. Bounds on threshold gate realizability. IEEE Trans. on Elect.
Comp., EC-12:561-564, 1963.

