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Abstract 

In this paper, we will consider the problem of classifying electroencephalo­
gram (EEG) signals of normal subjects, and subjects suffering from psychi­
atric disorder, e.g., obsessive compulsive disorder, schizophrenia, using a 
class of artificial neural networks, viz., multi-layer perceptron. It is shown 
that the multilayer perceptron is capable of classifying unseen test EEG 
signals to a high degree of accuracy. 

1 Introduction 

The spontaneous electrical activity of the brain was first observed by Caton in 1875. 
Although considerable investigations on the electrical activity of the non-human 
brain have been undertaken, it was not until 1929 that a German neurologist Hans 
Berger first published studies on the electroencephalogram (EEG) recorded on the 
scalp of human. He lay the foundation of clinical and experimental applications of 
EEG between 1929 and 1938. 

Since then EEG signals have been used in both clinical and experimental work 
to discover the state which the brain is in (see e.g., Herrmann, 1982, Kolb and 
Whishaw, 1990, Lindsay and Holmes, 1984). It has served as a direct indication of 
any brain activities. It is routinely being used in clinical diagnosis of epilepsy (see 
e.g., Basar, 1980; Cooper, 1980). 

Despite advances in technology, the classification of EEG signals at present requires 
a trained personnel who either "eyeballs" the direct EEG recordings over time, 
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or studies the contour maps representing the potentials generated from the "raw" 
electrical signal (see e.g., Cooper, 1980). This is both a highly skillful job, as well as 
a laborious task for a neurologist. With the current advances in computers, a logical 
question to ask: can we use the computer to perform an automa'(.ic classification of 
EEG signals into different classes denoting the psychiatric states of the subjects? 

This type of classification studies is not new. In fact, in the late 1960's there were 
a number of attempts in performing the automatic classification using discriminant 
analysis techniques. However, this work was largely abandoned as most researchers 
concluded that classification based on discriminant techniques does not generalise 
well, i.e., while it has very good classification accuracies in classifying the data which 
is used to train the automatic classification system, it may not have high accuracy 
in classifying the unseen data which are not used to train the system in the first 
instance. 

Recently, a class of classification techniques, called artificial neural network (ANN), 
based on nonlinear models, has become very popular (see e.g., Touretzky, 1989, 
1990, Lippmann et aI, 1991). This type of networks claims to be inspired by bi­
ological neurons, and their many inter-connections. This type of artificial neural 
networks has limited pattern recognition capabilities. Among the many applications 
which have been applied so far are sonar signal classification (see e.g., Touretzky, 
1989), handwritten character recognition (see .e.g., Touretzky, 1990), facial expres­
sion recognition (see e.g., Lippmann et a1. 1991). 

In this paper, we will investigate the possibility of using an ANN for EEG classifica­
tions. While it is possible to extract features from the time series using either time 
domain or frequency domain techniques, from some preliminary work, it is found 
that the time domain techniques give much better results. 

The structure of this paper is as follows: In section 2, we will give a brief discussion 
on a popular class of ANNs, viz., multi-layer perceptrons (MLP). In section 3, we 
will discuss various feature extractions using time domain techniques. In section 4, 
we will present results in classifying a set of unseen EEG signals. 

2 Multi-layer Perceptrons 

Artificial neural network (ANN) consists of a number of artificial neurons inter­
connected together by synaptic weights to form a network (see e.g, Lippmann, 
1987). Each neuron is modeled by the following mechanical model: 

n 

y = f(L WiXi + 0) (1) 
i=l 

where y is the output of the neuron, Wi, i = 1,2, ... , n are the synaptic weights, 
Xi, i = 1,2 ... , n are the inputs, and 0 is a threshold function. The nonlinear 
function f(.) can be a sigmoid function, or a hyperbolic tangent function. An ANN 
is a network of inter-connected neurons by synapses (Hertz, Krogh and Palmer, 
1991). 

There are many possible ANN architectures (Hertz, Krogh, Palmer, 1991). A pop-
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ular architecture is the multi-layer perceptron (MLP) (see e.g., Lippmann, 1987). 
In this class of ANN, signal travels only in a forward direction. Hence it is also 
known as a feedforward network. Mathematically, it can be described as follows: 

Y = !(Az + 0ll) 
z=!(Bu+Oz ) 

(2) 

(3) 

where y is a m x 1 vector, representing the output of the output layer neurons; z 
is a p x 1 vector, representing the outputs of the hidden layer neurons; u is a n x 1 
vector, representing the input feature vector; OJ! is a m x 1 vector, known as the 
threshold vector for the output layer neurons; Oz is a p x 1 vector, representing 
the threshold vector for the hidden layer neurons; A and B are matrices of m x p 
and p x n respectively. The matrices A, and B are the synaptic weights connecting 
the hidden layer neuron to the output layer neuron; and the input layer neurons, 
and the hidden layer neurons respectively. For simplicity sake, we will assume the 
nonlinearity function to be a sigmoid function, i.e., 

1 
f(a)=I+e- a (4) 

The unknown parameters A, B, OJ!, Oz can be obtained by minimizing an error cri­
terion: 

p 

J = L(di - Yi)2 (5) 
.=1 

where P is the total number of examplars, di , i = 1,2, ... , P are the desired outputs 
which we wish the MLP to learn. 

By differentiating the error criterion J with respect to the unknown parameters, 
learning algorithms can be obtained. 

The learning rules are as follows: 

(6) 

where Anew is the next estimate of the matrix A, T denotes the transpose of a 
vector or a matrix. TJ is a learning constant. A(y) is a m x m diagonal matrix, 
whose dia~onal elements are / (Y')' i = 1,2, ... , m. The vector e is m x 1, and it is 
given by e = [(d1 - yd, (d2 - Y2), ... , (dm - Ym)]T. 

The updating equation for the B matrix is given by the following 

(7) 

where 6 is a p x 1 vector, given by 
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fJ = AT A(y)e 

and the other parameters are as defined above. 

The threshold vectors can be obtained as follows: 

and 

(8) 

(9) 

(10) 

Thus it is observed that once a set of initial conditions for the unknown parameters 
are given, this algorithm will find a set of parameters which will converge to a value, 
representing possibly a local minimum of the error criterion. 

3 Pre-processing of the EEG signal 

A cursory glance at a typical EEG signal of a normal subject, or a psychiatrically ill 
subject would convince anyone that one cannot hope to distinguish the signal just 
from the raw data alone. Consequently, one would need to perform considerable 
feature extraction (data pre-processing) before classification can be made. There 
are two types of simple feature extraction techniques, viz., frequency domain and 
time domain (see e.g., Kay, 1988, Marple, 1987). In the frequency domain, one 
performs a fast Fourier transform (FFT) on the data. Often it is advantageous 
to modify the signal by a window function. This will reduce the sidelobe leakage 
(Kay, and Marple, 1981, Harris, 1978). it is possible to use the average spectrum, 
obtained by averaging the spectrum over a number of frames, as the input feature 
vector to the MLP. 

In the time domain, one way to pre-process the data is to fit a parametric model to 
the underlying data. There are a number of parametric models, e.g., autoregressive 
(AR) model, an autoregressive moving average (ARMA) model (see e.g., Kay, 1988, 
Marple, 1987). 

The autoregressive model can be described as follows: 

N 

Se = L OjSe_j + fe 

j=1 

(11) 

where Se is the signal at time t; ft is assumed to be a zero mean Gaussian vari­
able with variance (T2. The unknown parameters OJ, j = 1,2, ... , N describe the 
spectrum of the signal. They can be obtained by using standard methods, e.g., 
Yule-Walker equations, or Levinson algorithm (Kay, 1988, Marple, 1987). 

The autoregressive moving average (ARMA) model can be seen as a parsimonious 
model for an AR model with a large N. Hence, as long as we are not concerned 
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about the interpretation of the AR model obtained, there is little advantage to 
use the more complicated ARMA model. Subsequently, in this paper, we will only 
consider the AR models. 

Once the AR parameters are determined, then they can be used as the input fea­
tures to the MLP. It is known that the AR parametric model basically produces 
a smoothed spectral envelope (Kay, 1988, Marple, 1987). Thus, the model param­
eters of AR is another way to convey the spectral information to the MLP. This 
information is different in quality to that given by the FFT technique in that the 
FFT transforms both signal and noise alike, while the parametric models tend to 
favor the signal more and is more effective in suppressing the noise effect. 

In some preliminary work, we find that the frequency domain extracted features do 
not give rise to good classification results using MLP. Henceforth we will consider 
only the AR parameters as input feature vectors. 

4 Classification Results 

In this section, we will summarise the results of the experiments in using the AR 
parametric method of feature extraction as input parameters to the MLP. 

We obtained EEG data pertaining to normal subjects, subjects who have been di­
agnosed as suffering from severe obsessive compulsive disorder (OCD), and subjects 
who have been diagnosed as suffering from severe schizophrenia. Both the OCD and 
the schizophrenic subjects are under medication. The subjects are chosen so that 
their medication as well as their medical conditions are at a steady state, i.e., they 
have not changed over a long period of time. The diagnosis is made by a number of 
trained neurologists. The data files are chosen only if the diagnosis from the experts 
concur. 

We use the standard 10-20 recording system (Cooper, 1980), i.e., there are 19 
channels of EEG recording, each sampled at 128 Hz. The recording were obtained 
while the subject is at rest. Some data screening has been performed to screen out 
the segment of data which contains any artifact. In addition, the data is anti-aliased 
first by a low pass filter before being sampled. The sampled data is then low pass 
filtered at 30 Hz to get rid of any higher frequency components. 

We have chosen one channel, viz., the Cz channel (the channel which is the recording 
of the signal at the azimuth of the scalp). This channel can be assumed to be 
representative of the brain state from the overall EEG recording of the scalp. 1 

This time series is employed for feature extraction purposes. 

For time domain feature extraction, we first convert the time series into a zero 
mean one. Then a data frame of one second duration is chosen 2 as the basic time 
segmentation of the series. An AR model is fitted to this one second time frame to 

1 From some preliminary work, it can be shown that this channel can be considered as 
a linear combination of the other channels, in the sense that the prediction error variance 
is small. 

2It has been found that the EEG signal is approximately stationary for signal length of 
one second. Hence employing a data frame width of one second ensures that the underlying 
assumptions in the AR modelling technique are valid (Marple, 1988) 
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extract a feature vector formed by the resulting AR coefficients. 

An average feature vector is acquired from the first 250 seconds, as in practice, the 
first 250 seconds usually represent a state of calm in the patient, and therefore the 
EEG is less noisy. After the first 250 seconds, the patient may enter an unstable 
condition, such as breathing faster and muscle contraction which can introduce 
artifacts. We use an AR model of length between 8 to 15. 

We have chosen 15 such data file to form our training data set. This consists of 5 
data files from normal subjects, 5 from OeD subjects, and 5 from subjects suffering 
from schizophrenia. 

In the time domain extracted feature vectors, we use a MLP with 8 input neurons, 
15 hidden layer neurons, and 3 output neurons. The MLP's are trained accordingly. 
We use a learning gain of 0.01. Once trained, the network is used to classify unseen 
data files. These unseen data files were pre-classified by human experts. Thus the 
desired classification of the unseen data files are known. This can then be used to 
check the usefulness of the MLP in generalising to unseen data files. 

The results 3 are shown in table 1. 

The unseen data set consists of 6 normal subjects, 8 schizophrenic subjects, and 
10 obsessive compulsive disorder subjects. It can be observed that the network 
correctly classifies all the normal cases, makes one mistake in classifying the 
schizophrena cases, and one mistake in classifying the OeD cases. 

Also we have experimented on varying the number of hidden neurons. It is found 
that the classification accuracy does not vary much with the variation of hidden 
layer neurons from 15 to 50. 

We have also applied the MLP on the frame by frame data, i.e., before they are being 
averaged over the 250 second interval. However, it is found that the classification 
results are not as good as the ones presented. We were puzzled by this result as 
intuitively, we would expect the frame by frame results to be better than the ones 
presented. 

A plausible explanation for this puzzle is given as follows: the EEG data is in 
general quite noisy. In the frame by frame analysis, the features extracted may 
vary considerably over a short time interval, while in the approach taken here, the 
noise effect is smoothed out by the averaging process. 

One may ask: why would the methods presented work at all? In traditional EEG 
analysis (Lindsay & Holmes, 1984), FFT technique is used to extract the frame 
by frame frequency responses. The averaged frequency response is then obtained 
over this interval. Traditionally only four dominant frequencies are observed, viz., 
the "alpha", "beta", "delta", and "theta" frequencies. It is a basic result in EEG 
research that these frequencies describe the underlying state of the subject. For 
example, it is known that the "alpha" wave indicates that the subject is at rest. An 
EEG technologist uses data in this form to assist in the diagnosis of the subject. 
On the other hand, it is relatively well known in signal processing literature (Kay, 

3The results shown are typical results. We have used different data files for training 
and testing. In most cases, the classification errors on the unseen data files are small, 
similar to those presented here. 
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original activation of activation of activation of predicted 
classes normal schiz ocd classes 
normall 0.905 0.008 0.201 normal 
normal2 0.963 0.006 0.103 normal 
normal3 0.896 0.021 0.086 normal 
normal4 0.870 0.057 0.020 normal 
normal5 0.760 0.237 0.000 normal 
norma16 0.752 0.177 0.065 normal 
schiz1 0.000 0.981 0.042 schiz 
schiz2 0.000 0.941 0.163 schiz 
schiz3 0.002 0.845 0.050 schiz 
schiz4 0.015 0.989 0.004 schiz 
schiz5 0.000 0.932 0.061 schiz 
schiz6 0.377 0.695 0.014 schiz 
schiz7 0.062 0.898 0.000 schiz 
schiz8 0.006 0.086 0.921 ocd 
ocdl 0.017 0.134 0.922 ocd 
ocd2 0.027 0.007 0.940 ocd 
ocd3 0.000 0.033 0.993 ocd 
ocd4 0.000 0.014 0.997 ocd 
ocd5 0.015 0.138 0.889 ocd 
ocd6 0.000 0.150 0.946 ocd 
ocd7 0.002 0.034 0.985 ocd 
ocd8 0.006 0.960 0.003 schiz 
ocd9 0.045 0.005 0.940 ocd 
ocdlO 0.085 0.046 0.585 ocd 

Table 1: Classification of unseen EEG data files 

1988, Marple, 1987) to view the AR model as indicative of the underlying frequency 
content of the signal. In fact, an 8th order AR model indicates that the signal 
can be considered to consist of 4 underlying frequencies. Thus, intuitively, the 
8th order AR model averaged over the first 250 seconds represents the underlying 
dominant frequencies in the signal. Given this interpretation, it is not surprising 
that the results are so good. The features extracted are similar to those used in the 
diagnosis of the subjects. The classification technique, which in this case, the MLP, 
is known to have good generalisation capabilities (Hertz, Krogh, Palmer, 1991). 
This contrasts the techniques used in previous attempts in the 1960's, e.g., the 
discriminant analysis, which is known to have poor generalisation capabilities. Thus, 
one of the reasons why this approach works may be attributed to the generalisation 
capabilities of the MLP. 

5 Conclusions 

In this paper, a method for classifying EEG data obtained from subjects who are 
normal, OCD or schizophrenia has been obtained by using the AR parameters as 
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input feature vectors. It is found that such a network has good generalisation 
capabili ties . 
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