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Abstract 

We describe a number of learning rules that can be used to train un­
supervised parallel feature extraction systems. The learning rules 
are derived using gradient ascent of a quality function. We con­
sider a number of quality functions that are rational functions of 
higher order moments of the extracted feature values. We show 
that one system learns the principle components of the correla­
tion matrix. Principal component analysis systems are usually not 
optimal feature extractors for classification. Therefore we design 
quality functions which produce feature vectors that support unsu­
pervised classification. The properties of the different systems are 
compared with the help of different artificially designed datasets 
and a database consisting of all Munsell color spectra. 

1 Introduction 

There are a number of unsupervised Hebbian learning algorithms (see Oja, 1992 
and references therein) that perform some version of the Karhunen-Loeve expan­
sion. Our approach to unsupervised feature extraction is to identify some desirable 
properties of the extracted feature vectors and to construct a quality functions that 
measures these properties. The filter functions are then learned from the input pat­
terns by optimizing this selected quality function. In comparison to conventional 
unsupervised Hebbian learning this approach reduces the amount of communication 
between the units needed to learn the weights in parallel since the complexity now 
lies in the learning rule used. 
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The optimal (orthogonal) solution to two of the proposed quality functions turn out 
to be related to the Karhunen-Loeve expansion: the first learns an arbitrary rota­
tion of the eigenvectors whereas the later learns the pure eigenvectors. A common 
problem with the Karhunen-Loeve expansion is the fact that the first eigenvector is 
normally the mean vector of the input patterns. In this case one filter function will 
have a more or less uniform response for a wide range of input patterns which makes 
it rather useless for classification. We will show that one quality function leads to 
a system that tend to learn filter functions which have a large magnitude response 
for just one class of samples (different for each filter function) and low magnitude 
response for samples from all other classes. Thus, it is possible to classify an in­
coming pattern by simply observing which filter function has the largest magnitude 
response . Similar to Intrator's Projection Pursuit related network (see Intrator & 
Cooper, 1992 and references therein) some quality functions use higher order (> 2) 
statistics of the input process but in contrast to Intrator's network there is no need 
to specify the amount of lateral inhibition needed to learn different filter functions. 

All systems considered in this paper are linear but at the end we will briefly discuss 
possible non-linear extensions. 

2 Quality functions 

In the following we consider linear filter systems. These can be described by the 
equation: 

O(t) W(t)P(t) (1) 
where P(t) E RM:l is the input pattern at iteration t, W(t) E RN:M is the filter 
coefficient matrix and O(t) = (01 (t), ... ,0N(t))' E RN:l is the extracted feature 
vector. Usually M > N, i.e. the feature extraction process defines a reduction of 
the dimensionality. Furthermore, we assume that both the input patterns and the 
filter functions are normed; IIP(t)1I = 1 and IIWn(t)1I = 1, "It "In. This implies that 
10~(t)1 ~ 1, 'Vi "In. 

Our first decision is to measure the scatter of the extracted feature vectors around 
the origin by the determinant of the output correlation matrix: 

QMS(t) = det EdO(t)O'(t)} (2) 
QMS(t) is the quality function used in the Maximum Scatter Filter System (MS­
system). The use of the determinant is motivated by the following two observations: 
1. The determinant is equal to the product of the eigenvalues and hence the product 
of the variances in the principal directions and thus a measure of the scattering 
volume in the feature space. 2. The determinant vanishs if some filter functions are 
linearly dependent. 

In (Lenz & Osterberg, 1992) we have shown that the optimal filter functions to 
QMS(t) are given by an arbitrary rotation of the N eigenvectors corresponding to 
the N largest eigenvalues of the input correlation matrix: 

Wopt RUeig (3) 
where Ueig contains the largest eigenvectors (or principal components) of the in­
put correlation matrix EdP(t)P'(t)}. R is an arbitrary rotation matrix with 
det( R) = 1. To differentiate between these solutions we need a second criterion. 
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One attempt to define the best rotation is to require that the mean energy Et { o~ (t)} 
should be concentrated in as few components on(t) of the extracted feature vector 
as possible. Thus, the mean energy Ed o~ (t)} of each filter function should be either 
very high (i.e. near 1) or very low (i.e. near 0). This leads to the following second 
order concentration measure: 

N 

Q2(t) = L Edo~(t)} (1- Edo!(t)}) (4) 
n=l 

which has a low non-negative value if the energies are concentrated. 

Another idea is to find a system that produces feature vectors that have unsuper­
vised discrimination power. In this case each learned filter function should respond 
selectively, i.e. have a large response for some input samples and low response for 
others. One formulation of this goal is that each extracted feature vector should be 
(up to the sign) binary; Oi(t) = ±1 and on(t) = 0, n 1= i, 'Vt. This can be measured 
by the following fourth order expression: 

N N 

Q4(t) = EdL o~(t) (1 - o~(t»)} L Edo~(t)} - Edo!(t)} (5) 
n=l n=l 

which has a low non-negative value if the features are binary. Note that it is not 
sufficient to use on(t) instead of o~(t) since Q4(t) will have a low value also for 
feature vectors with components equal in magnitude but with opposite sign. A 
third criterion can be found as follows: if the filter functions have selective filter 
response then the response to different input patterns differ in magnitude and thus 
the variance of the mean energy Ed o~(t)} is large. The total variance is measured 
by: 

N N 

L Var {o~ (t)} = L Ed ( o~ (t) - Ed o~ (t)} ) 2} 

n=l n=l 
N 

L Edo!(t)} - (Ed o!(t)})2 (6) 
n=l 

Following (Darlington, 1970) it can be shown that the distribution of o~ should 
be bimodal (modes below and above Edo~}) to maximize QVar(t). The main 
difference between QVar(t) and the quality function used by Intrator is the use 
of a fourth order term Edo!(t)} instead of a third order term Edo~(t)}. With 
Ed o~(t)} the quality function is a measure of the skewness of the distribution 
o(t) and it is maximized when one mode is at zero and one (or several) is above 
Edo~(t)}. 

In this paper we will examine the following non-parametric combinations of the 
quality functions above: 

QMS(t) 
Q2(t) 

QMS(t) 
Q4(t) 

QVar(t)QM set) 

(7) 

(8) 

(9) 
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We refer to the corresponding filter systems as: the Karhunen-Loeve Filter Sys­
tem (KL-system), the Fourth Order Filter System (FO-system) and the Maximum 
Variance Filter System (MV-system). 

Since each quality function is a combination of two different functions it is hard to 
find the global optimal solution. Instead we use the following strategy to determine 
a local optimal solution. 

Definition 1 The optimal orthogonal solution to each quality function is of the 
form: 

W opt (10) 

where Ropt is the rotation of the largest eigenvectors which minimize Q2(t), Q4(t) 
or maximize QYar(t). 

In (Lenz & Osterberg, 1992 and Osterberg, 1993) we have shown that the optimal 
orthogonal solution to the KL-system are the N pure eigenvectors if the N largest 
eigenvalues are all distinct (i.e. Ropt = I). If some eigenvalues are equal then the 
solution is only determined up to an arbitrary rotation of the eigenvectors with 
equal eigenvalues. The fourth order term Edo~(t)} in Q4(t) and QYar(t) makes it 
difficult to derive a closed form solution. The best we can achieve is a numerical 
method (in the case of Q4(t) see Osterberg, 1993) for the computation of the optimal 
orthogonal filter functions. 

3 Maximization of the quality function 

The partial derivatives of QMS(t), Q2(t), Q4(t) and QYar(t) with respect to w~(t) 
(the mth weight in the nth filter function at iteration t) are only functions of the 
input pattern pet), the output values OCt) = (OI(t), ... , ON(t» and the previous 
values of the weight coefficients (w~ (t - 1), ... , w~ (t - 1» within the filter function 
(see Osterberg, 1993). Especially, they are not functions of the internal weights 
((wlCt - 1), ... , wf1(t -1», i;/; n) of the other filter functions in the system. This 
implies that the filter coefficients can be learned in parallel using a system of the 
structure shown in Figure 1. 

In (Osterberg, 1993) we used on-line optimization techniques based on gradient 
ascent. We tried two different methods to select the step length parameter. One 
rather heuristical depending on the output On (t) of the filter function and one 
inverse proportional to the second partial derivative of the quality function with 
respect to w~ (t). In each iteration the length of each filter function was explicitly 
normalized to one. Currently, we investigate standard unconstrained optimization 
methods (Dennis & Schnabel, 1983) based on batch learning. Now the step length 
parameter is selected by line search in the search direction Set): 

mrc Q(W(t) + AS(t» (11) 

Typical choices of Set) include Set) = I and Set) = H-l. With the identity matrix 
we get Steepest Ascent and with the inverse Hessian the quasi-Newton algorithm. 
U sing sufficient synchronism the line search can be incorporated in the parallel 
structure (Figure 1). To incorporate the quasi-Newton algorithm we have to assume 
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Figure 1: The architecture of the filter system 

that the Hessian matrix is block diagonal, i.e. the second partial derivatives with 
respect to wr(t)w,(t), k f. I, "1m are assumed to be zero. In general this is not the 
case and it is not clear if a block diagonal approximation is valid or not. The second 
partial derivatives can be approximated by secant methods (normally the BFGS 
method). Furthermore the condition of normalized filter functions can be achieved 
by optin4izing in hyperspherical polar coordinates. Preliminary experiments (mustly 
with Steepest Ascent) show that more advanced optimization techniques lead to a 
more robust convergence of the filter functions. 

4 Experiments 

In (Osterberg, 1993) we describe a series of experiments in which we investigate 
systematically the following properties of the MS-system, the KL-system and the 
FO-system: convergence speed, dependence on initial solution W(O) , distance be­
tween learned solution and optimal (orthogonal) solution, supervised classification 
of the extracted feature vectors using linear regression and the degree of selective 
response of the learned filter functions. We use training sets with controlled scalar 
products between the cluster centers of three classes of input patterns embedded 
in a 32-D space. The results of the experiments can be summarized as follows . In 
contrast to the MS-system, we noticed that the KL- and FO-system had problems 
to converge to the optimal orthogonal solutions for some initial solutions. All sys­
tems learned orthogonal solutions regardless of W(O). The supervised classification 
power was independent of the filter system used. Only the FO-system produced 
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Table 1: Typical filter response to patterns from (a)-(c) Tsetl and (d) Tset2 using 
the filter functions learned with (a) the KL-system, (b) the FO-system and (c)-(d) 
the MV-system. (e)-(f) Output covariance matrix using the filter functions learned 
with (e) the KL-system and (f) the MV-system. 

[( -0.12) (-0.46) (0.73)] 0.92 , 0.83 , 0.66 
-0.38 0.32 0.14 

(a.) 

[( 
0.28) ( 0.10) ( 0.98)] -0.91 , -0.39 , -0.23 
0.44 0.95 0.11 

( 
0.0340 
0.0001 
0.0005 

(c) 

0.0001 0.0005) 
0.9300 0.0000 
0.0000 0.0353 

(e) 

[ ( -0.71) (-0.99) (-0.22)] 0.59 , -0.08 , -0.04 
0.28 0.01 0.97 

(b) 

[ ( -0.50) (-0.49) (-0.81)] -0.80 , -0.50 , -0.49 
0.50 0.81 0.50 

( 
0.3788 
0.3463 

-0.3473 

(d) 

0.3463 
0.3760 

-0.3467 
(f) 

-0.3473 ) 
-0.3467 

0.3814 

filter functions which mainly react for patterns from just one class and only if the 
similarity (measured by the scalar product) between the classes in the training set 
was smaller than approximately 0.5. Thus, the FO-system extracts feature vectors 
which have unsupervised discrimination power. Furthermore, we showed that the 
FO-system can distinguish between data sets having identical correlation matrices 
(second order statistics) but different fourth order statistics. Recent experiments 
with more advanced optimization techniques (Steepest Ascent) show better conver­
gence properties for the KL- and FO-system. Especially the distance between the 
learned filter functions and the optimal orthogonal ones becomes smaller. 

We will describe some experiments which show that the MV-system is more suitable 
for tasks requiring unsupervised classification. We use two training sets Tsetl and 
Tset2. In the first set the mean scalar product between class one and two is 0.7, 
between class one and three 0.5 and between class two and three 0.3. In the second 
set the mean scalar products between all classes are 0.9, i.e. the angle between all 
cluster centers is arccos(0.9) = 260 • In Table 4(a)-( c) we show the filter response of 
the learned filter functions with the KL-, FO- and MV-system to typical examples 
of the input patterns in the training set Tsetl. For the KL-system we see that the 
second filter function gives the largest magnitude response for both, patterns from 
class one and two. For the FO-system the feature vectors are more binary. Still the 
first filter function has the largest magnitude response for patterns from class one 
and two. For the MV -system we see that each filter function has largest magnitude 
response for only one class of input patterns and thus the extracted feature vectors 
support unsupervised discrimination. In Table 4( d) (computed from Tset2) we see 
that this is the case even then the scalar products between the cluster centers are 
as high as 0.9. The filter functions learned by the MV -system are approximately 
orthogonal. The system learns thus the rotation of the largest eigenvectors which 
maximizes QVa.r(t). Therefore it will not extract uncorrelated features (see Ta-
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Figure 2: (a) Examples of normalized reflectance spectra of typical reddish (solid 
curve), greenish (dotted curve) and bluish (dashed curve) Munsell color chips. (b) 
The three largest eigenvectors belonging to the correlation matrix of the 1253 dif­
ferent reflectance spectra. (c) The learned filter functions with the MV-system. (d) 
The learned non-negative filter functions with the MV-system. In all figures the 
x-axes show the wave length (nm) 

ble 4(f» but the variances (e.g. the diagonal elements of the covariance matrix) of 
the features are more or less equal. In Table 4( e) we see that the KL-system ex­
tracts uncorrelate features with largely different variance. This demonstrates that 
the KL-system tries to learn the pure eigenvectors. 

Recently, we have applied the MV-system to real world data. The training set 
consists of normalized reflectance spectra of the 1253 different color chips in the 
Munsell color atlas. Figure 2(a) shows one typical example of a red, a green and 
a blue color chip and Figure 2(b) the three largest eigenvectors belonging to the 
correlation matrix of the training set. We see that the first eigenvector (the solid 
curve) has a more or less uniform response for all different colors. On the other hand, 
the MV -system (Figure 2 (c» learns one bluish, one greenish and one reddish filter 
function. Thus, the filter functions divide the color space according to the primary 
colors red, green and blue. We notice that the learned filter functions are orthogonal 
and tend to span the same space as the eigenvectors since IIW.ol - RoptUeigliF = 
0.0199 (the Frobenius norm) where Ropt maximizes QVa.r(t). Figure 2(d) show one 
preliminary attempt to include the condition of non-negative filter functions in the 
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optimization process (Steepest Ascent). We see that the learned filter functions 
are non-negative and divide the color space according to the primary colors. One 
possible real word application is optical color analysis where non-negative filter 
functions are much easier to realize using optical components. Smoother filter 
functions can be optained by incorporating additional constraints into the quality 
function. 

5 Non-linear extensions 

The proposed strategy to extract feature vectors apply to nonlinear filter sys­
tems as well. In this case the input output relation OCt) = W(t)P(t) is replaced 
by OCt) = I(W(t)P(t» where I describes the desired non-linearity. The corre­
sponding learning rule can be derived using gradient based techniques as long as 
the non-linearity 1(·) is differentiable. The exact form of 1(,) will usually be appli­
cation oriented. Node nonlinearities of sigmoid type are one type of nonlinearities 
which has received a lot of attention (see for example Oja & Karhunen, 1993). 
Typical applications include: robust Principal Component Analysis PCA (outlier 
protection, noise suppression and symmetry breaking), sinusoidal signal detection 
in colored noise and robust curve fitting. 
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